CCZ-inequivalent representatives from the known APN families for dimensions up to 11
The following table presents CCZ-inequivalent representatives from all CCZ-equivalence classes corresponding to the known infinite families of APN power functions over GF(2^n) and the known infinite families of quadratic APN polynomials over GF(2^n) over GF(2n) for n from 6 to 11. Values of various invariants are given in the cases when this is possible; empty cells in the invariant columns indicate that their computation is infeasible using our current resources.
Dimension | N○ | Functions | Equivalent to | Walsh spectrum | Γ-rank | Δ-rank | Multiplier group |
---|---|---|---|---|---|---|---|
6 | 6.1 | x3 | Gold | Gold | 1102 | 94 | 24192 = 27 * 33 * 7 |
6.2 | x24+ax17+a8x10+ax9+x3 | C3 | Gold | 1146 | 94 | 4032 = 26 * 32 * 7 | |
6.3 | ax3+x17+a4x24 | C7-C9 | Gold | 1166 | 96 | 896 = 27 * 7 | |
7 | 7.1 | x3 | Gold | Gold | 3610 | 198 | 113792 = 27 * 7 * 127 |
7.2 | x5 | Gold | Gold | 3708 | 198 | 113792 = 27 * 7 * 127 | |
7.3 | x9 | Gold | Gold | 3610 | 198 | 113792 = 27 * 7 * 127 | |
7.4 | x13 | Kasami | Gold | 4270 | 338 | 889 = 7 * 127 | |
7.5 | x57 | Kasami | Gold | 4704 | 436 | 889 = 7 * 127 | |
7.6 | x63 | Inverse | Inverse | 8128 | 4928 | 1778 = 2 * 7 * 127 | |
7.7 | x3+Tr7(x9) | C4 | Gold | 4026 | 212 | 896 = 27 * 7 | |
8 | 8.1 | x3 | Gold | Gold | 11818 | 420 | 522240 = 211 * 3 * 5 * 17 |
8.2 | x9 | Gold | Gold | 12370 | 420 | 522240 = 211 * 3 * 5 * 17 | |
8.3 | x57 | Kasami | Gold | 15358 | 960 | 2040 = 23 * 3 * 5 * 17 | |
8.4 | x3+x17+p48x18+p3x33+px34+x48 | C3 | Gold | 13200 | 414 | 46080 = 210 * 32 * 5 | |
8.5 | x3+Tr8(x9) | C4 | Gold | 13800 | 432 | 6144 = 211 * 3 | |
8.6 | x3+a-1Tr8(a3x9) | C4 | Gold | 13842 | 436 | 3072 = 210 * 3 | |
8.7 | (x+x16)3+a(x+x16)(ax+a16x16)+a17(ax+a16x16)12 | C10 | Gold | 13642 | 436 | 46080 = 210 * 32 * 5 | |
8.8 | x9+Tr8(x3) | C11 | Gold | 13804 | 434 | 6144 = 211 * 3 | |
8.9 | a(a16x+x16a)(x16+x) + (a16x+x16a)12 + a17(a16x+x16a)4(x16+x)2 + a17(x16+x)3, where a is a zero of X8 + X4 + X3 + X2 + 1 | C12 | Gold | 13798 | 438 | 3840 = 28 * 3 * 5 | |
8.10 | a(a16x+x16a)(x16+x) + (a16x+x16a)66 + a17(a16x+x16a)64(x16+x)8 + a51(x16+x)9, where a is a zero of X8 + X4 + X3 + X2 + 1 | C12 | Gold | 13700 | 438 | 15360 = 210 * 3 * 5 | |
9 | 9.1 | x3 | Gold | Gold | 38470 | 872 | 2354688 = 29 * 32 * 7 * 73 |
9.2 | x5 | Gold | Gold | 41494 | 872 | 2354688 = 29 * 32 * 7 * 73 | |
9.3 | x17 | Gold | Gold | 38470 | 872 | 2354688 = 29 * 32 * 7 * 73 | |
9.4 | x13 | Kasami | Gold | 58676 | 3086 | 4599 = 32 * 7 * 73 | |
9.5 | x241 | Kasami | Gold | 61726 | 3482 | 4599 = 32 * 7 * 73 | |
9.6 | x19 | Welch | Gold | 60894 | 3956 | 4599 = 32 * 7 * 73 | |
9.7 | x255 | Inverse | Inverse | 130816 | 93024 | 9198 = 2 * 32 * 7 * 73 | |
9.8 | x3+Tr9(x9) | C4 | Gold | 47890 | 920 | 4608 = 29 * 32 | |
9.9 | x3+Tr39(x9+x18) | C5 | Gold | 48428 | 930 | 4608 = 29 * 32 | |
9.10 | x3+Tr39(x18+x36) | C6 | Gold | 48460 | 944 | 4608 = 29 * 32 | |
9.11 | x3+a246x10+a47x17+a181x66+a428x129 | C11 | Gold | 48596 | 944 | 10752 = 29 * 3 * 7 | |
10 | 10.1 | x3 | Gold | Gold | 125042 | 10475520 = 211 * 3 * 5 * 11 * 31 | |
10.2 | x9 | Gold | Gold | 136492 | 10475520 = 211 * 3 * 5 * 11 * 31 | ||
10.3 | x57 | Kasami | Gold | 186416 | 10230 = 2 * 3 * 5 * 11 * 31 | ||
10.4 | x339 | Dobbertin | Dobbertin | 280604 | 10230 = 2 * 3 * 5 * 11 * 31 | ||
10.5 | x6+x33+p31x192 | C3 | Gold | 151216 | 476160 = 210 * 3 * 5 * 31 | ||
10.6 | x33+x72+p31x258 | C3 | Gold | 153896 | 476160 = 210 * 3 * 5 * 31 | ||
10.7 | x3+Tr10(x9) | C4 | Gold | 164034 | 30720 = 211 * 3 * 5 | ||
10.8 | x3+a-1Tr10(a3x9) | C4 | Gold | 164098 | 15360 = 210 * 3 * 5 | ||
10.9 | x3 + p341x9 + p682x96 + x288 | C13 | Gold | 166068 | 476160 = 210 * 3 * 5 * 31 | ||
10.10 | x3 + p341x129 + p682x96 + x36 | C13 | Gold | 166168 | 476160 = 210 * 3 * 5 * 31 | ||
10.11 | x3 + a128x6 + a384x12 + a133x33 + x34 + a2x64 + x65 + a128x68 + x96 + a4x130 + a260x136 + a4x192 + a136x260 + a12x384 | C12 | Gold | 162550 | 158720 | ||
10.12 | x3 + a920x6 + a153x12 + a925x33 + x34 + a794x64 + x65 + a920x68 + x96 + a796x130 + a29x136 + a796x192 + a928x260 + a804x384 | C12 | Gold | 163400 | 31744 | ||
10.13 | x3 + p788x6 + p21x12 + p793x33 + x34 + p662x64 + x65 + p788x68 + x96 + p664x130 + p920x136 + p664x192 + p796x260 + p672x384 | C12 | Gold | 163398 | 31744 | ||
10.14 | x5 + p576x18 + p512x20 + p133x33 + x36 + p2x64 + p514x80 + x129 + p512x144 + x160 + p80x514 + p16x516 + p18x576 + p16x640 | C12 | Gold | 163308 | 158720 | ||
10.15 | x5 + a477x18 + a413x20 + a34x33 + x36 + a926x64 + a415x80 + x129 + a413x144 + x160 + a1004x514 + a940x516 + a942x576 + a940x640 | C12 | Gold | 164026 | 31744 | ||
10.16 | x5 + a81x18 + a17x20 + a661x33 + x36 + a530x64 + a19x80 + x129 + a17x144 + x160 + a608x514 + a544x516 + a546x576 + a544x640 | C12 | Gold | 164026 | 31744 | ||
10.17 | x3 + p341x36 | C13 | Gold | 169984 | 168960 | ||
11 | 11.1 | x3 | Gold | Gold | |||
11.2 | x5 | Gold | Gold | ||||
11.3 | x9 | Gold | Gold | ||||
11.4 | x17 | Gold | Gold | ||||
11.5 | x33 | Gold | Gold | ||||
11.6 | x13 | Kasami | Gold | ||||
11.7 | x57 | Kasami | Gold | ||||
11.8 | x241 | Kasami | Gold | ||||
11.9 | x993 | Kasami | Gold | ||||
11.10 | x35 | Welch | Gold | ||||
11.11 | x287 | Niho | Gold | ||||
11.12 | x1023 | Inverse | Inverse | ||||
11.13 | x3+Tr11(x9) | C4 | Gold |
Note: In dimension 10, not all instances of family C11 have been checked. The ones that we have checked are CCZ-equivalent to the representatives currently given in the table above, but, at the moment, we cannot assert that the representatives from the table exhaust all possible CCZ-classes corresponding to C11 in dimension 10.