Plateaued Functions: Difference between revisions
No edit summary |
No edit summary |
||
Line 106: | Line 106: | ||
<div><math> 2^n | \{ (a,b,c) \in (\mathbb{F}_2^n)^3 : F(a) + F(b) + F(c) + F(a+b+c+x) = v \}| = | \{ (a,b,c,d) \in (\mathbb{F}_2^n)^4 : F(a) + F(b) + F(c) + F(a+b+c) + F(d) + F(d+x) = v \}|.</math></div> | <div><math> 2^n | \{ (a,b,c) \in (\mathbb{F}_2^n)^3 : F(a) + F(b) + F(c) + F(a+b+c+x) = v \}| = | \{ (a,b,c,d) \in (\mathbb{F}_2^n)^4 : F(a) + F(b) + F(c) + F(a+b+c) + F(d) + F(d+x) = v \}|.</math></div> | ||
== Characterization by the Means of the Power Moments of the Walsh Transform == | |||
=== First Characterization === | |||
A Boolean function <math>f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2</math> is plateuaed if and only if, for every <math>0 \ne \alpha \in \mathbb{F}_2^n</math>, we have | |||
<div><math>\sum_{w \in \mathbb{F}_2^n} W_f(w + \alpha) W_f^3(w) = 0.</math></div> | |||
An <math>(n,m)</math>-function <math>F</math> is plateuaed if and only if for every <math>u \in \mathbb{F}_2^m</math> and <math>0 \ne \alpha \in \mathbb{F}_2^n</math>, we have | |||
<div><math>\sum_{w \in \mathbb{F}_2^n} W_F(w + \alpha, u) W_F^3(w,u) = 0.</math></div> | |||
Furthermore, <math>F</math> is plateaued with single amplitude if and only if, in addition, the sum <math>\sum_{w \in \mathbb{F}_2^n} W_F^4(w,u)</math> does not depend on <math>u</math> for <math>u \ne 0</math>. | |||
=== Second Characterization === | |||
A Boolean function <math>f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2</math> is plateuaed if and only if, for every <math>b \in \mathbb{F}_2</math>, we have | |||
<div><math> \sum_{a \in \mathbb{F}_2} W_f^4(a) = 2^n(-1)^{f(b)} \sum_{a \in \mathbb{F}_2^n} (-1)^{a \cdot b} W_f^3(a). </math></div> | |||
An <math>(n,m)</math>-function <math>F</math> is plateuaed if and only if, for every <math>b \in \mathbb{F}_2^n</math> and every <math>u \in \mathbb{F}_m</math>, we have | |||
<div><math> \sum_{a \in \mathbb{F}_2^n} W_F^4(a,u) = 2^n(-1)^{u \cdot F(b)} \sum_{a \in \mathbb{F}_2^n} (-1)^{a \cdot b} W_F^3(a,u).</math></div> | |||
Moreover, <math>F</math> is plateaued with single amplitude if and only if the two sums above do not depend on <math>u</math> for <math>u \ne 0</math>. | |||
=== Third Characterization === | |||
Any Boolean function <math>f</math> in <math>n</math> variables satisfies | |||
<div><math> \left( \sum_{a \in \mathbb{F}_2^n} W_f^4(a) \right)^2 \le 2^{2n} \left( \sum_{a \in \mathbb{F}_2^n} W_f^6(a) \right), </math></div> | |||
with equality if and only if <math>f</math> is plateuaed. | |||
Any <math>(n,m)</math>-function <math>F</math> satisfies | |||
<div><math> \sum_{u \in \mathbb{F}_2^m} \left( \sum_{a \in \mathbb{F}_2^n} W_F^4(a,u) \right)^2 \le 2^{2n} \sum_{u \in \mathbb{F}_2^m} \left( \sum_{a \in \mathbb{F}_2^n} W_F^6(a,u) \right), </math></div> | |||
with equality if and only if <math>F</math> is plateuaed. | |||
In addition, every <math>(n,m)</math>-function satisfies | |||
<div><math>\sum_{u \in \mathbb{F}_2^m} \sum_{a \in \mathbb{F}_2^n} W_F^4(a,u) \le 2^n \sum_{u \in \mathbb{F}_2^m} \sqrt{ \sum_{a \in \mathbb{F}_2^n} W_F^6(a,u) }, </math></div> | |||
with equality if and only if <math>F</math> is plateuaed. |
Revision as of 15:28, 8 February 2019
Background and Definition
A Boolean function [math]\displaystyle{ f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2 }[/math] is said to be plateaued if its Walsh transform takes at most three distinct values, viz. [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \pm \mu }[/math] for some positive ineger [math]\displaystyle{ \mu }[/math] called the amplitude of [math]\displaystyle{ f }[/math].
This notion can be naturally extended to vectorial Boolean functions by applying it to each component. More precisely, if [math]\displaystyle{ F }[/math] is an [math]\displaystyle{ (n,m) }[/math]-function, we say that [math]\displaystyle{ F }[/math] is plateaued if all its component functions [math]\displaystyle{ u \cdot F }[/math] for [math]\displaystyle{ u \ne 0 }[/math] are plateaued. If all of the component functions are plateaued and have the same amplitude, we say that [math]\displaystyle{ F }[/math] is plateaued with single amplitude.
The characterization by means of the derivatives below suggests the following definition: a v.B.f. [math]\displaystyle{ F }[/math] is said to be strongly-plateuaed if, for every [math]\displaystyle{ a }[/math] and every [math]\displaystyle{ v }[/math], the size of the set [math]\displaystyle{ \{ b \in \mathbb{F}_2^n : D_aD_bF(x) = v \} }[/math] does not depend on [math]\displaystyle{ x }[/math], or, equivalently, the size of the set [math]\displaystyle{ \{ b \in \mathbb{F}_2^n : D_aF(b) = D_aF(x) + v \} }[/math] does not depend on [math]\displaystyle{ x }[/math].
Equivalence relations
The class of functions that are plateaued with single amplitude is CCZ-invariant.
The class of plateaued functions is only EA-invariant.
Relations to other classes of functions
All bent and semi-bent Boolean functions are plateaued.
Any vectorial AB function is plateaued with single amplitude.
Constructions of Boolean plateaued functions
Primary constructons
Generalization of the Maiorana-MacFarland Functions [1]
The Maiorana-MacFarland class of bent functions can be generalized into the class of functions [math]\displaystyle{ f_{\phi,h} }[/math] of the form
for [math]\displaystyle{ x \in \mathbb{F}_2^r, y \in \mathbb{F}_2^s }[/math], where [math]\displaystyle{ r }[/math] and [math]\displaystyle{ s }[/math] are any positive integers, [math]\displaystyle{ n = r + s }[/math], [math]\displaystyle{ \phi : \mathbb{F}_2^s \rightarrow \mathbb{F}_2^r }[/math] is arbitrary and [math]\displaystyle{ h : \mathbb{F}_2^s \rightarrow \mathbb{F}_2 }[/math] is any Boolean function.
The Walsh transform of [math]\displaystyle{ f_{\phi,h} }[/math] takes the value
at [math]\displaystyle{ (a,b) }[/math]. If [math]\displaystyle{ \phi }[/math] is injective, resp. takes each value in its image set two times, then [math]\displaystyle{ f_{\phi,h} }[/math] is plateaued of amplitude [math]\displaystyle{ 2^r }[/math], resp. [math]\displaystyle{ 2^{r+1} }[/math].
Characterization of Plateaued Functions [2]
Characterization by the Derivatives
Using the fact that a Boolean function [math]\displaystyle{ f }[/math] is plateaued if and only if the expression [math]\displaystyle{ \sum_{a,b \in \mathbb{F}_2^n} (-1)^{DaDbf(x)} }[/math] does not depend on [math]\displaystyle{ x \in \mathbb{F}_2^n }[/math], one can derive the following characterization.
Let [math]\displaystyle{ F }[/math] be an [math]\displaystyle{ (n,m) }[/math]-function. Then:
- F is plateuaed if and only if, for every [math]\displaystyle{ v \in \mathbb{F}_2^m }[/math], the size of the set
does not depend on [math]\displaystyle{ x }[/math];
- F is plateaued with single amplitude if and only if the size of the set depends neither on [math]\displaystyle{ x }[/math], nor on [math]\displaystyle{ v \in \mathbb{F}_2^m }[/math] for [math]\displaystyle{ v \ne 0 }[/math].
Moreover:
- for every [math]\displaystyle{ F }[/math], the value distribution of [math]\displaystyle{ D_aD_bF(x) }[/math] equals that of [math]\displaystyle{ D_aF(b) + D_aF(x) }[/math] when [math]\displaystyle{ (a,b) }[/math] ranges over [math]\displaystyle{ (\mathbb{F}_2^n)^2 }[/math];
- if two plateaued functions [math]\displaystyle{ F,G }[/math] have the same distribution, then all of their component functions [math]\displaystyle{ u \cdot F, u\cdot G }[/math] have the same amplitude.
Power Functions
Let [math]\displaystyle{ F(x) = x^d }[/math]. Then, for every $v,x,\lambda \in \mathbb{F}_{2^n}</math> with [math]\displaystyle{ \lambda \ne 0 }[/math], we have
Then:
- [math]\displaystyle{ F }[/math] is plateaued if and only if, for every [math]\displaystyle{ v \in \mathbb{F}_{2^n} }[/math], we have
- [math]\displaystyle{ F }[/math] is plateaued with single amplitude if and only if the size above does not, in addition, depend on [math]\displaystyle{ v \ne 0 }[/math].
Functions with Unbalanced Components
Let [math]\displaystyle{ F }[/math] be an [math]\displaystyle{ (n,m) }[/math]-function. Then [math]\displaystyle{ F }[/math] is plateuaed with all components unbalanced if and only if, for every [math]\displaystyle{ v,x \in \mathbb{F}_{2}^n }[/math], we have
Moreover, [math]\displaystyle{ F }[/math] is plateaued with single amplitude if and only if this value does not, in addition, depend on [math]\displaystyle{ v }[/math] for [math]\displaystyle{ v \ne 0 }[/math].
Strongly-Plateaued Functions
A Boolean function is strongly-plateaued if and only if its partially-bent. A v.B.f. is strongly-plateaued if and only if all of its component functions are partially-bent. In particular, bent and quadratic Boolean and vectorial functions are strongly-plateaued.
The image set [math]\displaystyle{ {\rm Im}(D_aF) }[/math] of any derivative of a strongly-plateaued function [math]\displaystyle{ F }[/math] is an affine space.
Characterization by the Auto-Correlation Functions
Recall that the autocorrelation function of a Boolean function [math]\displaystyle{ f }[/math] is defined as [math]\displaystyle{ {\Delta_f}(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + f(x+a)} }[/math].
An [math]\displaystyle{ n }[/math]-variable Boolean function [math]\displaystyle{ f }[/math] is plateaued if and only if, for every [math]\displaystyle{ x \in \mathbb{F}_2^n }[/math], we have
An [math]\displaystyle{ (n,m) }[/math]-function [math]\displaystyle{ F }[/math] is plateaued if and only if, for every [math]\displaystyle{ x \in \mathbb{F}_2^n, u \in \mathbb{F}_2^m }[/math], we have
Furthermore, [math]\displaystyle{ F }[/math] is plateaued with single amplitude if and only if, for every [math]\displaystyle{ x \in \mathbb{F}_2^n, u \in \mathbb{F}_2^m }[/math], we have
Alternatively, [math]\displaystyle{ F }[/math] is plateuaed if and only if, for every [math]\displaystyle{ x,v \in \mathbb{F}_2^n }[/math], we have
Characterization by the Means of the Power Moments of the Walsh Transform
First Characterization
A Boolean function [math]\displaystyle{ f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2 }[/math] is plateuaed if and only if, for every [math]\displaystyle{ 0 \ne \alpha \in \mathbb{F}_2^n }[/math], we have
An [math]\displaystyle{ (n,m) }[/math]-function [math]\displaystyle{ F }[/math] is plateuaed if and only if for every [math]\displaystyle{ u \in \mathbb{F}_2^m }[/math] and [math]\displaystyle{ 0 \ne \alpha \in \mathbb{F}_2^n }[/math], we have
Furthermore, [math]\displaystyle{ F }[/math] is plateaued with single amplitude if and only if, in addition, the sum [math]\displaystyle{ \sum_{w \in \mathbb{F}_2^n} W_F^4(w,u) }[/math] does not depend on [math]\displaystyle{ u }[/math] for [math]\displaystyle{ u \ne 0 }[/math].
Second Characterization
A Boolean function [math]\displaystyle{ f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2 }[/math] is plateuaed if and only if, for every [math]\displaystyle{ b \in \mathbb{F}_2 }[/math], we have
An [math]\displaystyle{ (n,m) }[/math]-function [math]\displaystyle{ F }[/math] is plateuaed if and only if, for every [math]\displaystyle{ b \in \mathbb{F}_2^n }[/math] and every [math]\displaystyle{ u \in \mathbb{F}_m }[/math], we have
Moreover, [math]\displaystyle{ F }[/math] is plateaued with single amplitude if and only if the two sums above do not depend on [math]\displaystyle{ u }[/math] for [math]\displaystyle{ u \ne 0 }[/math].
Third Characterization
Any Boolean function [math]\displaystyle{ f }[/math] in [math]\displaystyle{ n }[/math] variables satisfies
with equality if and only if [math]\displaystyle{ f }[/math] is plateuaed.
Any [math]\displaystyle{ (n,m) }[/math]-function [math]\displaystyle{ F }[/math] satisfies
with equality if and only if [math]\displaystyle{ F }[/math] is plateuaed.
In addition, every [math]\displaystyle{ (n,m) }[/math]-function satisfies
with equality if and only if [math]\displaystyle{ F }[/math] is plateuaed.