Plateaued Functions: Difference between revisions
No edit summary |
mNo edit summary Β |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
= Background and Definition = | = Background and Definition = | ||
A Boolean function <math>f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2</math> is said to be ''plateaued'' if its Walsh transform takes at most three distinct values, viz. | A Boolean function <math>f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2</math> is said to be ''plateaued'' if its Walsh transform takes at most three distinct values, viz. 0 and Β±π for some positive ineger π called the ''amplitude'' of π. | ||
This notion can be naturally extended to vectorial Boolean functions by applying it to each component. More precisely, if | This notion can be naturally extended to vectorial Boolean functions by applying it to each component. More precisely, if πΉ is an (π,π)-function, we say that πΉ is ''plateaued'' if all its component functions π’β
πΉ for π’β 0 are plateaued. If all of the component functions are plateaued and have the same amplitude, we say that πΉ is ''plateaued with single amplitude''. | ||
The characterization by means of the derivatives below suggests the following definition: a v.B.f. | The characterization by means of the derivatives below suggests the following definition: a v.B.f. πΉ is said to be ''strongly-plateuaed'' if, for every π and every π£, the size of the set <math>\{ b \in \mathbb{F}_2^n : D_aD_bF(x) = v \}</math> does not depend on π₯, or, equivalently, the size of the set <math>\{ b \in \mathbb{F}_2^n : D_aF(b) = D_aF(x) + v \}</math> does not depend on π₯. | ||
== Equivalence relations == | == Equivalence relations == | ||
Line 29: | Line 29: | ||
<div><math>f_{\phi,h}(x,y) = x \cdot \phi(y) + h(y)</math></div> | <div><math>f_{\phi,h}(x,y) = x \cdot \phi(y) + h(y)</math></div> | ||
for <math>x \in \mathbb{F}_2^r, y \in \mathbb{F}_2^s</math>, where | for <math>x \in \mathbb{F}_2^r, y \in \mathbb{F}_2^s</math>, where π and π are any positive integers, π = π + π , <math>\phi : \mathbb{F}_2^s \rightarrow \mathbb{F}_2^r</math> is arbitrary and <math>h : \mathbb{F}_2^s \rightarrow \mathbb{F}_2</math> is any Boolean function. | ||
The Walsh transform of <math>f_{\phi,h}</math> takes the value | The Walsh transform of <math>f_{\phi,h}</math> takes the value | ||
Line 35: | Line 35: | ||
<div><math>W_{f_{\phi,h}}(a,b) = 2^r \sum_{y \in \phi^{-1}(a)} (-1)^{b \cdot y + h(y)}</math></div> | <div><math>W_{f_{\phi,h}}(a,b) = 2^r \sum_{y \in \phi^{-1}(a)} (-1)^{b \cdot y + h(y)}</math></div> | ||
at | at (π,π). If π is injective, resp. takes each value in its image set two times, then <math>f_{\phi,h}</math> is plateaued of amplitude 2<sup>π</sup>, resp. 2<sup>π+1</sup>. | ||
= Characterization of Plateaued Functions <ref name="carletPlateuaed">Carlet C. Boolean and vectorial plateaued functions and APN functions. IEEE Transactions on Information Theory. 2015 Nov;61(11):6272-89.</ref>Β = | = Characterization of Plateaued Functions <ref name="carletPlateuaed">Carlet C. Boolean and vectorial plateaued functions and APN functions. IEEE Transactions on Information Theory. 2015 Nov;61(11):6272-89.</ref>Β = | ||
Line 41: | Line 41: | ||
== Characterization by the Derivatives == | == Characterization by the Derivatives == | ||
Using the fact that a Boolean function | Using the fact that a Boolean function π is plateaued if and only if the expression <math>\sum_{a,b \in \mathbb{F}_2^n} (-1)^{DaDbf(x)}</math> does not depend on <math>x \in \mathbb{F}_2^n</math>, one can derive the following characterization. | ||
Let | Let πΉ be an (π,π)-function. Then: | ||
* | * πΉ is plateuaed if and only if, for every <math>v \in \mathbb{F}_2^m</math>, the size of the set | ||
<div><math> \{ (a,b) \in (\mathbb{F}_2^n)^2 : D_aD_bF(x) = v \}</math></div> | <div><math> \{ (a,b) \in (\mathbb{F}_2^n)^2 : D_aD_bF(x) = v \}</math></div> | ||
Line 51: | Line 51: | ||
does not depend on <math>x</math>; | does not depend on <math>x</math>; | ||
* | * πΉ is plateaued with single amplitude if and only if the size of the set depends neither on <math>x</math>, nor on <math>v \in \mathbb{F}_2^m</math> for <math>v \ne 0</math>. | ||
Moreover: | Moreover: | ||
* for every | * for every πΉ, the value distribution of <math>D_aD_bF(x)</math> equals that of <math>D_aF(b) + D_aF(x)</math> when <math>(a,b)</math> ranges over <math>(\mathbb{F}_2^n)^2</math>; | ||
* if two plateaued functions | * if two plateaued functions πΉ,πΊ have the same distribution, then all of their component functions <math>u \cdot F, u\cdot G</math> have the same amplitude. | ||
=== Power Functions === | === Power Functions === | ||
Line 67: | Line 67: | ||
Then: | Then: | ||
* | * πΉ is plateaued if and only if, for every <math>v \in \mathbb{F}_{2^n}</math>, we have | ||
<div><math>| \{ (a,b) \in \mathbb{F}_{2^n}^2 : D_aF(b) + D_aF(1) = v \} | = | \{ (a,b) \in \mathbb{F}_{2^n}^2 : D_aF(b) + D_aF(0) = v \}|;</math></div> | <div><math>| \{ (a,b) \in \mathbb{F}_{2^n}^2 : D_aF(b) + D_aF(1) = v \} | = | \{ (a,b) \in \mathbb{F}_{2^n}^2 : D_aF(b) + D_aF(0) = v \}|;</math></div> | ||
* | * πΉ is plateaued with single amplitude if and only if the size above does not, in addition, depend on <math>v \ne 0</math>. | ||
=== Functions with Unbalanced Components === | === Functions with Unbalanced Components === | ||
Let | Let πΉ be an (π,π)-function. Then πΉ is plateuaed with all components unbalanced if and only if, for every <math>v,x \in \mathbb{F}_{2}^n</math>, we have | ||
<div><math> | \{ (a,b) \in (\mathbb{F}_2^n)^2 : D_aD_bF(x) = v \}| = | \{ (a,b) \in (\mathbb{F}_2^n)^2 : F(a) + F(b) = v \}|.</math></div> | <div><math> | \{ (a,b) \in (\mathbb{F}_2^n)^2 : D_aD_bF(x) = v \}| = | \{ (a,b) \in (\mathbb{F}_2^n)^2 : F(a) + F(b) = v \}|.</math></div> | ||
Moreover, | Moreover, πΉ is plateaued with single amplitude if and only if this value does not, in addition, depend on <math>v</math> for <math>v \ne 0</math>. | ||
=== Strongly-Plateaued Functions === | === Strongly-Plateaued Functions === | ||
Line 91: | Line 91: | ||
Recall that the autocorrelation function of a Boolean function <math>f</math> is defined as <math>{\Delta_f}(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + f(x+a)}</math>. | Recall that the autocorrelation function of a Boolean function <math>f</math> is defined as <math>{\Delta_f}(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + f(x+a)}</math>. | ||
An | An π-variable Boolean function π is plateaued if and only if, for every <math>x \in \mathbb{F}_2^n</math>, we have | ||
<div><math>2^n \sum_{a \in \mathbb{F}_2^n} \Delta_f(a) \Delta_f(a+x) = \left( \sum_{a \in \mathbb{F}_2^n} \Delta_f^2(a) \right) \Delta_f(x).</math></div> | <div><math>2^n \sum_{a \in \mathbb{F}_2^n} \Delta_f(a) \Delta_f(a+x) = \left( \sum_{a \in \mathbb{F}_2^n} \Delta_f^2(a) \right) \Delta_f(x).</math></div> | ||
An | An (π,π)-function πΉ is plateaued if and only if, for every <math>x \in \mathbb{F}_2^n, u \in \mathbb{F}_2^m</math>, we have | ||
<div><math> 2^n \sum_{a \in \mathbb{F}_2^n} \Delta_{u \cdot F}(a) \Delta_{u \cdot F}(a+x) = \left( \sum_{a \in \mathbb{F}_2^n} \Delta_{u \cdot F}^2(a) \right) \Delta_{u \cdot F}(x).</math></div> | <div><math> 2^n \sum_{a \in \mathbb{F}_2^n} \Delta_{u \cdot F}(a) \Delta_{u \cdot F}(a+x) = \left( \sum_{a \in \mathbb{F}_2^n} \Delta_{u \cdot F}^2(a) \right) \Delta_{u \cdot F}(x).</math></div> | ||
Furthermore, | Furthermore, πΉ is plateaued with single amplitude if and only if, for every <math>x \in \mathbb{F}_2^n, u \in \mathbb{F}_2^m</math>, we have | ||
<div><math> \sum_{a \in \mathbb{F}_2^n} \Delta_{u \cdot F}(a) \Delta_{u \cdot F}(a+x) = \mu^2 \Delta_{u \cdot F}(x).</math></div> | <div><math> \sum_{a \in \mathbb{F}_2^n} \Delta_{u \cdot F}(a) \Delta_{u \cdot F}(a+x) = \mu^2 \Delta_{u \cdot F}(x).</math></div> | ||
Alternatively, | Alternatively, πΉ is plateuaed if and only if, for every <math>x,v \in \mathbb{F}_2^n</math>, we have | ||
<div><math> 2^n | \{ (a,b,c) \in (\mathbb{F}_2^n)^3 : F(a) + F(b) + F(c) + F(a+b+c+x) = v \}| = | \{ (a,b,c,d) \in (\mathbb{F}_2^n)^4 : F(a) + F(b) + F(c) + F(a+b+c) + F(d) + F(d+x) = v \}|.</math></div> | <div><math> 2^n | \{ (a,b,c) \in (\mathbb{F}_2^n)^3 : F(a) + F(b) + F(c) + F(a+b+c+x) = v \}| = | \{ (a,b,c,d) \in (\mathbb{F}_2^n)^4 : F(a) + F(b) + F(c) + F(a+b+c) + F(d) + F(d+x) = v \}|.</math></div> | ||
== Characterization by the Means of the Power Moments of the Walsh Transform == | |||
=== First Characterization === | |||
A Boolean function <math>f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2</math> is plateuaed if and only if, for every <math>0 \ne \alpha \in \mathbb{F}_2^n</math>, we have | |||
<div><math>\sum_{w \in \mathbb{F}_2^n} W_f(w + \alpha) W_f^3(w) = 0.</math></div> | |||
An (π,π)-function πΉ is plateuaed if and only if for every <math>u \in \mathbb{F}_2^m</math> and <math>0 \ne \alpha \in \mathbb{F}_2^n</math>, we have | |||
<div><math>\sum_{w \in \mathbb{F}_2^n} W_F(w + \alpha, u) W_F^3(w,u) = 0.</math></div> | |||
Furthermore, πΉ is plateaued with single amplitude if and only if, in addition, the sum <math>\sum_{w \in \mathbb{F}_2^n} W_F^4(w,u)</math> does not depend on <math>u</math> for <math>u \ne 0</math>. | |||
=== Second Characterization === | |||
A Boolean function <math>f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2</math> is plateuaed if and only if, for every <math>b \in \mathbb{F}_2</math>, we have | |||
<div><math> \sum_{a \in \mathbb{F}_2} W_f^4(a) = 2^n(-1)^{f(b)} \sum_{a \in \mathbb{F}_2^n} (-1)^{a \cdot b} W_f^3(a). </math></div> | |||
An (π,π)-function πΉ is plateuaed if and only if, for every <math>b \in \mathbb{F}_2^n</math> and every <math>u \in \mathbb{F}_m</math>, we have | |||
<div><math> \sum_{a \in \mathbb{F}_2^n} W_F^4(a,u) = 2^n(-1)^{u \cdot F(b)} \sum_{a \in \mathbb{F}_2^n} (-1)^{a \cdot b} W_F^3(a,u).</math></div> | |||
Moreover, πΉ is plateaued with single amplitude if and only if the two sums above do not depend on π’ for <math>u \ne 0</math>. | |||
=== Third Characterization === | |||
Any Boolean function π in <math>n</math> variables satisfies | |||
<div><math> \left( \sum_{a \in \mathbb{F}_2^n} W_f^4(a) \right)^2 \le 2^{2n} \left( \sum_{a \in \mathbb{F}_2^n} W_f^6(a) \right), </math></div> | |||
with equality if and only if π is plateuaed. | |||
Any (π,π)-function πΉ satisfies | |||
<div><math> \sum_{u \in \mathbb{F}_2^m} \left( \sum_{a \in \mathbb{F}_2^n} W_F^4(a,u) \right)^2 \le 2^{2n} \sum_{u \in \mathbb{F}_2^m} \left( \sum_{a \in \mathbb{F}_2^n} W_F^6(a,u) \right), </math></div> | |||
with equality if and only if πΉ is plateuaed. | |||
In addition, every (π,π)-function satisfies | |||
<div><math>\sum_{u \in \mathbb{F}_2^m} \sum_{a \in \mathbb{F}_2^n} W_F^4(a,u) \le 2^n \sum_{u \in \mathbb{F}_2^m} \sqrt{ \sum_{a \in \mathbb{F}_2^n} W_F^6(a,u) }, </math></div> | |||
with equality if and only if πΉ is plateuaed. | |||
= Characterization of APN among Plateaued Functions = | |||
== Characterization by the Derivatives == | |||
One very useful property of quadratic functions which extends to plateaued functions is that it suffices to consider the number of solutions to the differential equation <math>D_aF(x) = D_aF(0)</math> in order to decided the APN-ness of a given function πΉ. More precisely, a plateuaed (π,π) function πΉ is APN if and only if the equation | |||
<div><math>F(x) + F(x+a) = F(0) + F(a)</math></div> | |||
has at most two solutions for any <math>0 \ne a \in \mathbb{F}_2^n</math>. | |||
== Characterization by the Walsh Transform == | |||
Suppose πΉ is a plateaued (π,π) function with <math>F(0) = 0</math>. Then πΉ is APN if and only if | |||
<div><math>| \{ (x,b) \in \mathbb{F}_{2^n}^2 : F(x) + F(x+b) + F(b) = 0 \} | = 3 \cdot 2^n - 2,</math></div> | |||
or, equivalently, | |||
<div><math> \sum_{a \in \mathbb{F}_{2^n}, u \in \mathbb{F}_{2^n}^*} W_F^3(a,u) = 2^{2n+1}(2^n-1).</math></div> | |||
Any (π,π)-function satisfies the inequality | |||
<div><math> 3 \cdot 2^{3^n} - 2^{2n + 1} \le \sum_{u \in \mathbb{F}_2^n} \sqrt{ \sum_{a \in \mathbb{F}_2^n} W_F^6(a,u)},</math></div> | |||
with equality if and only if πΉ is APN plateaued. | |||
If we denote by <math>2^{\lambda_u}</math> the amplitude of the component function <math>u \cdot F</math> of a given plateuaed function <math>F</math>, then πΉ is APN if and only if | |||
<div><math>\sum_{0 \ne u \in \mathbb{F}_2^n} 2^{2 \lambda_u} \le 2^{n+1}(2^n-1).</math></div> | |||
== Functions with Unbalanced Components == | |||
Let πΉ be an (π,π)-plateaued function with all components unbalanced. Then | |||
<div><math>| \{ (a,b) \in (\mathbb{F}_2^n)^2 : a \ne b, F(a) = F(b)\}| \ge 2 \cdot (2^n-1),</math></div> | |||
with equality if and only if πΉ is APN. |
Latest revision as of 16:05, 5 November 2019
Background and Definition
A Boolean function [math]\displaystyle{ f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2 }[/math] is said to be plateaued if its Walsh transform takes at most three distinct values, viz. 0 and Β±π for some positive ineger π called the amplitude of π.
This notion can be naturally extended to vectorial Boolean functions by applying it to each component. More precisely, if πΉ is an (π,π)-function, we say that πΉ is plateaued if all its component functions π’β πΉ for π’β 0 are plateaued. If all of the component functions are plateaued and have the same amplitude, we say that πΉ is plateaued with single amplitude.
The characterization by means of the derivatives below suggests the following definition: a v.B.f. πΉ is said to be strongly-plateuaed if, for every π and every π£, the size of the set [math]\displaystyle{ \{ b \in \mathbb{F}_2^n : D_aD_bF(x) = v \} }[/math] does not depend on π₯, or, equivalently, the size of the set [math]\displaystyle{ \{ b \in \mathbb{F}_2^n : D_aF(b) = D_aF(x) + v \} }[/math] does not depend on π₯.
Equivalence relations
The class of functions that are plateaued with single amplitude is CCZ-invariant.
The class of plateaued functions is only EA-invariant.
Relations to other classes of functions
All bent and semi-bent Boolean functions are plateaued.
Any vectorial AB function is plateaued with single amplitude.
Constructions of Boolean plateaued functions
Primary constructons
Generalization of the Maiorana-MacFarland Functions [1]
The Maiorana-MacFarland class of bent functions can be generalized into the class of functions [math]\displaystyle{ f_{\phi,h} }[/math] of the form
for [math]\displaystyle{ x \in \mathbb{F}_2^r, y \in \mathbb{F}_2^s }[/math], where π and π are any positive integers, π = π + π , [math]\displaystyle{ \phi : \mathbb{F}_2^s \rightarrow \mathbb{F}_2^r }[/math] is arbitrary and [math]\displaystyle{ h : \mathbb{F}_2^s \rightarrow \mathbb{F}_2 }[/math] is any Boolean function.
The Walsh transform of [math]\displaystyle{ f_{\phi,h} }[/math] takes the value
at (π,π). If π is injective, resp. takes each value in its image set two times, then [math]\displaystyle{ f_{\phi,h} }[/math] is plateaued of amplitude 2π, resp. 2π+1.
Characterization of Plateaued Functions [2]
Characterization by the Derivatives
Using the fact that a Boolean function π is plateaued if and only if the expression [math]\displaystyle{ \sum_{a,b \in \mathbb{F}_2^n} (-1)^{DaDbf(x)} }[/math] does not depend on [math]\displaystyle{ x \in \mathbb{F}_2^n }[/math], one can derive the following characterization.
Let πΉ be an (π,π)-function. Then:
- πΉ is plateuaed if and only if, for every [math]\displaystyle{ v \in \mathbb{F}_2^m }[/math], the size of the set
does not depend on [math]\displaystyle{ x }[/math];
- πΉ is plateaued with single amplitude if and only if the size of the set depends neither on [math]\displaystyle{ x }[/math], nor on [math]\displaystyle{ v \in \mathbb{F}_2^m }[/math] for [math]\displaystyle{ v \ne 0 }[/math].
Moreover:
- for every πΉ, the value distribution of [math]\displaystyle{ D_aD_bF(x) }[/math] equals that of [math]\displaystyle{ D_aF(b) + D_aF(x) }[/math] when [math]\displaystyle{ (a,b) }[/math] ranges over [math]\displaystyle{ (\mathbb{F}_2^n)^2 }[/math];
- if two plateaued functions πΉ,πΊ have the same distribution, then all of their component functions [math]\displaystyle{ u \cdot F, u\cdot G }[/math] have the same amplitude.
Power Functions
Let [math]\displaystyle{ F(x) = x^d }[/math]. Then, for every $v,x,\lambda \in \mathbb{F}_{2^n}</math> with [math]\displaystyle{ \lambda \ne 0 }[/math], we have
Then:
- πΉ is plateaued if and only if, for every [math]\displaystyle{ v \in \mathbb{F}_{2^n} }[/math], we have
- πΉ is plateaued with single amplitude if and only if the size above does not, in addition, depend on [math]\displaystyle{ v \ne 0 }[/math].
Functions with Unbalanced Components
Let πΉ be an (π,π)-function. Then πΉ is plateuaed with all components unbalanced if and only if, for every [math]\displaystyle{ v,x \in \mathbb{F}_{2}^n }[/math], we have
Moreover, πΉ is plateaued with single amplitude if and only if this value does not, in addition, depend on [math]\displaystyle{ v }[/math] for [math]\displaystyle{ v \ne 0 }[/math].
Strongly-Plateaued Functions
A Boolean function is strongly-plateaued if and only if its partially-bent. A v.B.f. is strongly-plateaued if and only if all of its component functions are partially-bent. In particular, bent and quadratic Boolean and vectorial functions are strongly-plateaued.
The image set [math]\displaystyle{ {\rm Im}(D_aF) }[/math] of any derivative of a strongly-plateaued function [math]\displaystyle{ F }[/math] is an affine space.
Characterization by the Auto-Correlation Functions
Recall that the autocorrelation function of a Boolean function [math]\displaystyle{ f }[/math] is defined as [math]\displaystyle{ {\Delta_f}(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + f(x+a)} }[/math].
An π-variable Boolean function π is plateaued if and only if, for every [math]\displaystyle{ x \in \mathbb{F}_2^n }[/math], we have
An (π,π)-function πΉ is plateaued if and only if, for every [math]\displaystyle{ x \in \mathbb{F}_2^n, u \in \mathbb{F}_2^m }[/math], we have
Furthermore, πΉ is plateaued with single amplitude if and only if, for every [math]\displaystyle{ x \in \mathbb{F}_2^n, u \in \mathbb{F}_2^m }[/math], we have
Alternatively, πΉ is plateuaed if and only if, for every [math]\displaystyle{ x,v \in \mathbb{F}_2^n }[/math], we have
Characterization by the Means of the Power Moments of the Walsh Transform
First Characterization
A Boolean function [math]\displaystyle{ f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2 }[/math] is plateuaed if and only if, for every [math]\displaystyle{ 0 \ne \alpha \in \mathbb{F}_2^n }[/math], we have
An (π,π)-function πΉ is plateuaed if and only if for every [math]\displaystyle{ u \in \mathbb{F}_2^m }[/math] and [math]\displaystyle{ 0 \ne \alpha \in \mathbb{F}_2^n }[/math], we have
Furthermore, πΉ is plateaued with single amplitude if and only if, in addition, the sum [math]\displaystyle{ \sum_{w \in \mathbb{F}_2^n} W_F^4(w,u) }[/math] does not depend on [math]\displaystyle{ u }[/math] for [math]\displaystyle{ u \ne 0 }[/math].
Second Characterization
A Boolean function [math]\displaystyle{ f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2 }[/math] is plateuaed if and only if, for every [math]\displaystyle{ b \in \mathbb{F}_2 }[/math], we have
An (π,π)-function πΉ is plateuaed if and only if, for every [math]\displaystyle{ b \in \mathbb{F}_2^n }[/math] and every [math]\displaystyle{ u \in \mathbb{F}_m }[/math], we have
Moreover, πΉ is plateaued with single amplitude if and only if the two sums above do not depend on π’ for [math]\displaystyle{ u \ne 0 }[/math].
Third Characterization
Any Boolean function π in [math]\displaystyle{ n }[/math] variables satisfies
with equality if and only if π is plateuaed.
Any (π,π)-function πΉ satisfies
with equality if and only if πΉ is plateuaed.
In addition, every (π,π)-function satisfies
with equality if and only if πΉ is plateuaed.
Characterization of APN among Plateaued Functions
Characterization by the Derivatives
One very useful property of quadratic functions which extends to plateaued functions is that it suffices to consider the number of solutions to the differential equation [math]\displaystyle{ D_aF(x) = D_aF(0) }[/math] in order to decided the APN-ness of a given function πΉ. More precisely, a plateuaed (π,π) function πΉ is APN if and only if the equation
has at most two solutions for any [math]\displaystyle{ 0 \ne a \in \mathbb{F}_2^n }[/math].
Characterization by the Walsh Transform
Suppose πΉ is a plateaued (π,π) function with [math]\displaystyle{ F(0) = 0 }[/math]. Then πΉ is APN if and only if
or, equivalently,
Any (π,π)-function satisfies the inequality
with equality if and only if πΉ is APN plateaued.
If we denote by [math]\displaystyle{ 2^{\lambda_u} }[/math] the amplitude of the component function [math]\displaystyle{ u \cdot F }[/math] of a given plateuaed function [math]\displaystyle{ F }[/math], then πΉ is APN if and only if
Functions with Unbalanced Components
Let πΉ be an (π,π)-plateaued function with all components unbalanced. Then
with equality if and only if πΉ is APN.
- β Camion P, Carlet C, Charpin P, Sendrier N. On Correlation-immune functions. InAdvances in CryptologyβCRYPTOβ91 1992 (pp. 86-100). Springer Berlin/Heidelberg.
- β Carlet C. Boolean and vectorial plateaued functions and APN functions. IEEE Transactions on Information Theory. 2015 Nov;61(11):6272-89.