APN Permutations: Difference between revisions

From Boolean
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 20: Line 20:


= Characterization of APN Permutations =
= Characterization of APN Permutations =
<ref name="BT"> Bartoli, D., Timpanella, M. On a conjecture on APN permutations. Cryptogr. Commun. 14, 925–931 (2022)</ref> Up to CCZ-equivalence, all of the APN permutations known so far belong to a few families, namely:
1. APN monomial functions in odd dimension.
2. One infinite family of quadratic polynomials in dimension <math>3n</math>, with <math>n</math> odd and <math>gcd(n,3)=1</math>.<ref name="BCL"> Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power
functions. IEEE Trans. Inf. Theory 54(9), 4218–4229 (2008)</ref>
3. Dillon's permutation in dimension 6.<ref name="Dillon">Browning, K., Dillon, J.F., McQuistan, M., Wolfe, A.J.: An APN permutation in dimension six. In: Post-proceedings of the 9-th International conference on finite fields and their applications, american
mathematical society, vol. 518, pp. 33–42 (2010)</ref>
4. Two sporadic quadratic APN permutations in dimension 9.<ref name="BL">Beierle, C., Leander, G.: New instances of quadratic APN functions, arXiv:2009.07204 (2020)</ref>
==On the component functions==
==On the component functions==
Clearly we have that no component function can be of degree 1. (This result is true for general APN maps)
Clearly we have that no component function can be of degree 1. (This result is true for general APN maps)
Line 34: Line 47:
<div><math>\sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}^2(D_af_\lambda) = 2^{2n}</math></div>
<div><math>\sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}^2(D_af_\lambda) = 2^{2n}</math></div>
for any 𝑎 ∈ 𝔽*<sub>2<sup>𝑛</sup></sub>.
for any 𝑎 ∈ 𝔽*<sub>2<sup>𝑛</sup></sub>.
==On APN Power Functions==
For <math>n</math> odd, all power APN functions and the known APN binomials are permutations. When <math>n</math> is even, no APN function exists in a class of permutations including power permutations.
Specifically:
If a power function <math>F(x)=x^d</math> over <math>\mathbb{F}_{2^n}</math> is APN, then for every <math>x\in \mathbb{F}_{2^n}</math> we have <math>x^d=1</math> if and only if <math>x^3=1</math>, that is, <math>F^{-1}(1)=\mathbb{F}_4\cap\mathbb{F}_{2^n}^*.</math> If <math>n</math> is odd, then <math>gcd(d,2^n-1)=1</math> and, if <math>n</math> is even, then <math>gcd(d,2^n-1)=3</math>. Consequently, APN power functions are permutations if <math>n</math> is odd, and are three-to-one over <math>\mathbb{F}_{2^n}^*</math> if <math>n</math> is even.<ref name="Dobbertin"> H. Dobbertin. Private Communication, 1998.</ref>

Revision as of 10:20, 4 October 2024

Characterization of Permutations

Component Functions

An (𝑛,𝑛)-function 𝐹 is a permutation if and only if all of its components 𝐹λ for λ ∈ 𝔽*2𝑛 are balanced.

Autocorrelation Functions of the Directional Derivatives

The characterization in terms of the component functions given above can be equivalently expressed as

[math]\displaystyle{ \sum_{a \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n }[/math]

for any λ ∈ 𝔽*2𝑛.

Equivalently [1], 𝐹 is a permutation if and only if

[math]\displaystyle{ \sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n }[/math]

for any λ ∈ 𝔽*2𝑛.

Characterization of APN Permutations

[2] Up to CCZ-equivalence, all of the APN permutations known so far belong to a few families, namely:

1. APN monomial functions in odd dimension.

2. One infinite family of quadratic polynomials in dimension [math]\displaystyle{ 3n }[/math], with [math]\displaystyle{ n }[/math] odd and [math]\displaystyle{ gcd(n,3)=1 }[/math].[3]

3. Dillon's permutation in dimension 6.[4]

4. Two sporadic quadratic APN permutations in dimension 9.[5]

On the component functions

Clearly we have that no component function can be of degree 1. (This result is true for general APN maps)

For 𝑛 even we have also that no component can be partially-bent[6]. This implies that, in even dimension, no component can be of degree 2.

Autocorrelation Functions of the Directional Derivatives

An (𝑛,𝑛)-function 𝐹 is an APN permutation if and only if [1]

[math]\displaystyle{ \sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n }[/math]

and

[math]\displaystyle{ \sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}^2(D_af_\lambda) = 2^{2n} }[/math]

for any 𝑎 ∈ 𝔽*2𝑛.

On APN Power Functions

For [math]\displaystyle{ n }[/math] odd, all power APN functions and the known APN binomials are permutations. When [math]\displaystyle{ n }[/math] is even, no APN function exists in a class of permutations including power permutations.

Specifically:

If a power function [math]\displaystyle{ F(x)=x^d }[/math] over [math]\displaystyle{ \mathbb{F}_{2^n} }[/math] is APN, then for every [math]\displaystyle{ x\in \mathbb{F}_{2^n} }[/math] we have [math]\displaystyle{ x^d=1 }[/math] if and only if [math]\displaystyle{ x^3=1 }[/math], that is, [math]\displaystyle{ F^{-1}(1)=\mathbb{F}_4\cap\mathbb{F}_{2^n}^*. }[/math] If [math]\displaystyle{ n }[/math] is odd, then [math]\displaystyle{ gcd(d,2^n-1)=1 }[/math] and, if [math]\displaystyle{ n }[/math] is even, then [math]\displaystyle{ gcd(d,2^n-1)=3 }[/math]. Consequently, APN power functions are permutations if [math]\displaystyle{ n }[/math] is odd, and are three-to-one over [math]\displaystyle{ \mathbb{F}_{2^n}^* }[/math] if [math]\displaystyle{ n }[/math] is even.[7]

  1. 1.0 1.1 Thierry Berger, Anne Canteaut, Pascale Charpin, Yann Laigle-Chapuy, On Almost Perfect Nonlinear Functions Over GF(2^n), IEEE Transactions on Information Theory, 2006 Sep,52(9),4160-70
  2. Bartoli, D., Timpanella, M. On a conjecture on APN permutations. Cryptogr. Commun. 14, 925–931 (2022)
  3. Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inf. Theory 54(9), 4218–4229 (2008)
  4. Browning, K., Dillon, J.F., McQuistan, M., Wolfe, A.J.: An APN permutation in dimension six. In: Post-proceedings of the 9-th International conference on finite fields and their applications, american mathematical society, vol. 518, pp. 33–42 (2010)
  5. Beierle, C., Leander, G.: New instances of quadratic APN functions, arXiv:2009.07204 (2020)
  6. Marco Calderini, Massimiliano Sala, Irene Villa, A note on APN permutations in even dimension, Finite Fields and Their Applications, vol. 46, 1-16, 2017
  7. H. Dobbertin. Private Communication, 1998.