APN Permutations: Difference between revisions
(Created page with "= Characterization of Permutations = == Component Functions == An <math>(n,n)</math>-function <math>F</math> is a permutation if and only if all of its components <math>F_\l...") |
NikiSpithaki (talk | contribs) |
||
(62 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
== Component Functions == | == Component Functions == | ||
An <math>(n,n)</math>-function <math>F</math> is a permutation if and only if all of its components <math> | An <math>(n,n)</math>-function <math>F</math> is a permutation if and only if all of its components <math>f_λ</math> for <math>\lambda\in\mathbb{F}^*_{2^n}</math> are balanced. | ||
== Autocorrelation Functions of the Directional Derivatives == | == Autocorrelation Functions of the Directional Derivatives == | ||
For any boolean function <math>f</math>, we denote by <math>\mathcal{F}(f)</math> the following value related to the Fourier (or Walsh) transform of <math>f</math>: <div><math>\mathcal{F}(f)=\sum_{x\in\mathbb{F}_{2^n}}(-1)^{f(x)}=2^n-2wt(f).</math></div> | |||
The characterization in terms of the component functions given above can be equivalently expressed as | The characterization in terms of the component functions given above can be equivalently expressed as | ||
Line 11: | Line 13: | ||
<div><math>\sum_{a \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n</math></div> | <div><math>\sum_{a \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n</math></div> | ||
for any <math> | for any <math>λ\in\mathbb{F}^*_{2^n}</math>. | ||
Equivalently <ref name="bercanchalai2006"> Thierry Berger, Anne Canteaut, Pascale Charpin, Yann Laigle-Chapuy, ''On Almost Perfect Nonlinear Functions Over GF(2^n)'', IEEE Transactions on Information Theory, 2006 Sep,52(9),4160-70</ref>, <math>F</math> is a permutation if and only if | Equivalently <ref name="bercanchalai2006"> Thierry Berger, Anne Canteaut, Pascale Charpin, Yann Laigle-Chapuy, ''On Almost Perfect Nonlinear Functions Over GF(2^n)'', IEEE Transactions on Information Theory, 2006 Sep,52(9),4160-70</ref>, <math>F</math> is a permutation if and only if | ||
Line 17: | Line 19: | ||
<div><math>\sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n</math></div> | <div><math>\sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n</math></div> | ||
for any <math> | for any <math>a\in\mathbb{F}^*_{2^n}</math>. | ||
= Characterization of APN Permutations = | = Characterization of APN Permutations = | ||
Up to CCZ-equivalence, all of the APN permutations known so far belong to a few families, namely:<ref name="BT"> Bartoli, D., Timpanella, M. <i>On a conjecture on APN permutations.</i> Cryptogr. Commun. 14, 925–931 (2022)</ref> | |||
1. APN monomial functions in odd dimension. | |||
2. One infinite family of quadratic polynomials in dimension <math>3n</math>, with <math>n</math> odd and <math>gcd(n,3)=1</math>.<ref name="BCL"> Budaghyan, L., Carlet, C., Leander, G.: <i>Two classes of quadratic APN binomials inequivalent to power | |||
functions.</i> IEEE Trans. Inf. Theory 54(9), 4218–4229 (2008)</ref> | |||
3. Dillon's permutation in dimension 6.<ref name="Dillon">Browning, K., Dillon, J.F., McQuistan, M., Wolfe, A.J.: <i>An APN permutation in dimension six.</i> In: Post-proceedings of the 9-th International conference on Finite Fields and their applications, American | |||
Mathematical Society, vol. 518, pp. 33–42 (2010)</ref> | |||
4. Two sporadic quadratic APN permutations in dimension 9.<ref name="BL">Beierle, C., Leander, G.: <i>New instances of quadratic APN functions</i>, arXiv:2009.07204 (2020)</ref> | |||
==On the component functions== | |||
Clearly we have that no component function can be of degree 1. (This result is true for general APN maps) | |||
For <math>n</math> even we have also that no component can be partially-bent<ref name="CalSalVil"> Marco Calderini, Massimiliano Sala, Irene Villa, ''A note on APN permutations in even dimension'', Finite Fields and Their Applications, vol. 46, 1-16, 2017</ref>. | |||
This implies that, in even dimension, no component can be of degree 2. | |||
== Autocorrelation Functions of the Directional Derivatives == | == Autocorrelation Functions of the Directional Derivatives == | ||
Line 28: | Line 48: | ||
and | and | ||
<div><math>\sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}^2(D_af_\lambda) = 2^{2n}</math></div> | <div><math>\sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}^2(D_af_\lambda) = 2^{2n}</math></div> | ||
for any <math>a \in \mathbb{F}_{2^n}^*</math>. | for any <math>a\in\mathbb{F}^*_{2^n}</math>. | ||
==On APN Power Functions== | |||
For <math>n</math> odd, all power APN functions and the known APN binomials are permutations. When <math>n</math> is even, no APN function exists in a class of permutations including power permutations. | |||
Specifically: | |||
If a power function <math>F(x)=x^d</math> over <math>\mathbb{F}_{2^n}</math> is APN, then for every <math>x\in \mathbb{F}_{2^n}</math> we have <math>x^d=1</math> if and only if <math>x^3=1</math>, that is, <math>F^{-1}(1)=\mathbb{F}_4\cap\mathbb{F}_{2^n}^*.</math> | |||
If <math>n</math> is odd, then <math>gcd(d,2^n-1)=1</math> and, if <math>n</math> is even, then <math>gcd(d,2^n-1)=3</math>. | |||
Consequently, APN power functions are permutations if <math>n</math> is odd, and are three-to-one over <math>\mathbb{F}_{2^n}^*</math> if <math>n</math> is even.<ref name="Dobbertin"> H. Dobbertin. <i>Private Communication</i>, 1998.</ref> | |||
==APN Permutations and Codes== | |||
Any linear subspace <math>C</math> of <math>\mathbb{F}_2^n</math> of dimension <math>k</math> is called a <i>binary linear code of length</i> <math>n</math> <i>and dimension</i> <math>k</math> and is denoted by <math>[n,k,d]</math>, where <math>d</math> is the minimum Hamming distance of <math>C</math>. | |||
Any linear <math>[n,k,d]-</math>code <math>C</math> is associated with its <i>dual</i> <math>[n,n-k,d^{\perp}]-</math>code, denoted by <math>C^{\perp}</math> and defined as <math>C^{\perp}=\{x\in\mathbb{F}_2^n\;|\;c\cdot x=0, \;\forall c\in C\}.</math> | |||
Let <math>\mathcal{H}</math> be a binary <math>(r\times n)</math> matrix. We say that a linear binary code <math>C</math> of length <math>n</math> is defined by the <i>parity check matrix</i> <math>\mathcal{H}</math> if <math>C=\{c\in\mathbb{F}_2^n\;|\;c\mathcal{H}^t=0\},</math> where <math>\mathcal{H}^t</math> is the transposed matrix of <math>\mathcal{H}</math>. | |||
APN (and AB) properties were expressed in terms of codes in <ref name="CCZ">Carlet, Claude & Charpin, Pascale & Zinoviev, Victor. (1998). <i>Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems.</i> Designs, Codes and Cryptography, vol. 15, p. 125-156.</ref>. In particular, we mention the following result: | |||
<strong>Theorem.</strong> Let <math>F</math> be a function on <math>\mathbb{F}_{2^m}</math> such that <math>F(0) = 0</math> and let <math>C_F</math> be the | |||
<math>[2^m − 1,k,d]-</math>code defined by the parity check matrix | |||
<div><math>\mathcal{H}_F=\begin{pmatrix} | |||
1 & \alpha & \alpha^2 & \cdots & \alpha^{2^m-2}\\ | |||
F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{2^m-2}) | |||
\end{pmatrix}</math></div> | |||
where each entry is viewed as a binary vector and <math>\alpha</math> is the primitive element of <math>\mathbb{F}_{2^m}.</math> Then: | |||
1. The code <math>C_F</math> is such that <math>3 \leq d \leq 5</math>. | |||
2. <math>F</math> is APN if and only if <math>d = 5</math>. | |||
3. <math>F</math> is AB if and only if the weight of every codeword in <math>C_F^{\perp}</math> lies in <math>\{0, 2^{m-1}, 2^{m-1}\pm 2^{m-1/2}\}</math>. | |||
A binary linear <math>[2^k-1,k,2^{k-1}]-</math>code <math>C</math> in <math>\mathbb{F}_2^n</math> is called <i>simplex</i>. Simplex codes constitute a family of linear error-correcting or error-detecting block codes, easily implemented as polynomial codes (i.e. codes whose encoding and decoding algorithms may be conveniently expressed in terms of polynomials over a base field). | |||
A <math>2k-</math>dimensional code <math>C</math> is called a <i>double simplex code</i> if it can be written as a direct sum of two simplex <math>[2^k-1,k,2^{k-1}]-</math>codes. The following result provides a connection between APN permutations and double simplex codes: | |||
<strong>Theorem.</strong><ref name="Dillon2">Browning, K.A. & Dillon, J.F. & Kibler, R.E. & McQuistan, M.T.. (2009). <i>APN polynomials and related codes.</i> Journal of Combinatorics, Information & System Sciences. 34.</ref> Let <math>F:\mathbb{F}_{2^n}\rightarrow\mathbb{F}_{2^n}</math> be APN, with <math>F(0)=0</math>. | |||
<math>F</math> is CCZ-equivalent to an APN permutation if and only if <math>C_F^{\perp}</math> is a double simplex code, i.e. <math>C_F^{\perp}=C_1\oplus C_2</math>, where <math>C_1, C_2</math> are simplex <math>[2^n-1,n,2^{n-1}]-</math>codes. | |||
==An APN Permutation in Dimension 6== | |||
In his paper <ref name="Hou">X.-D. Hou. <i>Affinity of Permutations of <math>\mathbb{F}_2^n</math>.</i> Proceedings of Workshop on Coding and Cryptography WCC 2003, pp. 273-280, 2003. Completed version in Discrete Applied Mathematics 154 (2), pp. 313-325, 2006.</ref>, Hou conjectured that APN permutations did not exist in even dimension. He proved the following theorem that covers the case of <math>n=4</math>: | |||
Let <math>F\in\mathbb{F}_{2^n}[x]</math> be a permutation polynomial with <math>n=2m</math>. Then: | |||
1. If <math>n=4</math>, then <math>F</math> is not APN. | |||
2. If <math>F\in\mathbb{F}_{2^m}[x]</math>, then <math>F</math> is not APN. | |||
The question of whether APN permutations exist in even dimension was a long-standing problem until, in 2009, Dillon presented an APN permutation (of algebraic degree <math>n-2</math> and nonlinearity <math>2^{n-1}-2^{n/2}</math>) in dimension 6. | |||
This function is CCZ-equivalent to the Kim function <math>\kappa(x)=x^3+x^{10}+ux^{24}</math> (where <math>u</math> is a primitive element of <math>\mathbb{F}_{2^6}</math>) and it is given by the polynomial | |||
<center><math>g(x)=w^{45}x^{60}+w^{41}x^{58}+w^{43}x^{57}+w^{4}x^{56}+w^{50}x^{54}+w^{20}x^{53}+w^{45}x^{52}+w^{20}x^{51}+w^{23}x^{50}+w^{36}x^{49}+w^{56}x^{48}+w^{21}x^{46}+w^5x^{45}+w^{21}x^{44}</math></center> | |||
<center><math>+w^{28}x^{43}+w^3x^{42}+w^{59}x^{41}+w^{58}x^{40}+w^{57}x^{39}+w^{53}x^{38}+w^{37}x^{37}+w^{40}x^{36}+w^{18}x^{35}+w^{41}x^{34}+w^{54}x^{33}+w^3x^{32}+w^{49}x^{30}+w^{41}x^{29}</math></center> | |||
<center><math>+w^{42}x^{28}+w^{50}x^{27}+w^{53}x^{26}+w^{58}x^{25}+w^9x^{24}+x^{23}+w^{28}x^{22}+w^3x^{21}+w^{21}x^{20}+w^{52}x^{19}+w^{60}x^{17}+w^{59}x^{16}+w^{10}x^{15}+w^{42}x^{13}</math></center> | |||
<center><math>+w^8x^{12}+w^{35}x^{11}+w^{44}x^{10}+w^{45}x^8+w^8x^7+w^{61}x^6+w^{59}x^5+w^{20}x^4+w^{12}x^3+w^{37}x^2+w^2x</math></center> | |||
where <math>w=u^{-2}</math>.<ref name="Dillon"></ref> | |||
It was used later in the cryptosystem Fides<ref name="BBKMW">B. Bilgin, A. Bogdanov, M. Knezevic, F. Mendel and Q. Wang. <i>Fides: lightweight authenticated cipher with side-channel resistance for constrained hardware.</i> Proceedings of International Workshop Cryptographic Hardware and Embedded Systems CHES 2013, Lecture Notes in Computer Science 8086, pp. 142-158, 2013.</ref>, which has been subsequently broken due to its weaknesses in the linear component. | |||
Dillon's function is also EA-equivalent to an involution and it is studied further in the introduction of the <i>butterfly construction</i><ref name="PUB">L. Perrin, A. Udovenko, A. Biryukov. <i>Cryptanalysis of a theorem: decomposing the only known solution to the big APN problem.</i> Proceedings of CRYPTO 2016, Lecture Notes in Computer Science 9815, part II, pp. 93-122, 2016.</ref>. Unfortunately, this construction does not allow obtaining APN permutations in more than six variables<ref name="PST">L. Perrin, A. Canteaut, S. Tian. <i>If a generalized butterfly is APN then it operates on 6 bits.</i> Special Issue on Boolean Functions and Their Applications 2018, Cryptography and Communications 11 (6), pp. 1147-1164, 2019.</ref>. | |||
==The Big Open APN Problem== | |||
The question of existence of APN permutations in even dimension <math>n\geq 8</math> remains open. There exist nonexistent results within the following classes: | |||
1. Plateaued functions (when APN, they have bent components); | |||
2. A class of functions including power functions; | |||
3. Functions whose univariate representation coefficients lie in <math>\mathbb{F}_{2^{n/2}}</math>, or in <math>\mathbb{F}_{2^4}</math> for <math>n</math> divisible by 4; <ref name="Hou"></ref> | |||
4. Functions whose univariate representation coefficients satisfy <math>\sum_{i=0}^{(2^n-1)/3}a_{3i}=0</math>; <ref name="Canteaut"> A. Canteaut. <i>Differential cryptanalysis of Feistel ciphers and differentially uniform mappings.</i> Proceedings of Selected Areas on Cryptography, SAC 1997, pp. 172-184, 1997.</ref> | |||
5. Functions having at least one partially-bent component<ref name="CalSalVil"></ref>. | |||
=References= |
Latest revision as of 14:28, 21 November 2024
Characterization of Permutations
Component Functions
An [math]\displaystyle{ (n,n) }[/math]-function [math]\displaystyle{ F }[/math] is a permutation if and only if all of its components [math]\displaystyle{ f_λ }[/math] for [math]\displaystyle{ \lambda\in\mathbb{F}^*_{2^n} }[/math] are balanced.
Autocorrelation Functions of the Directional Derivatives
For any boolean function [math]\displaystyle{ f }[/math], we denote by [math]\displaystyle{ \mathcal{F}(f) }[/math] the following value related to the Fourier (or Walsh) transform of [math]\displaystyle{ f }[/math]:
The characterization in terms of the component functions given above can be equivalently expressed as
for any [math]\displaystyle{ λ\in\mathbb{F}^*_{2^n} }[/math].
Equivalently [1], [math]\displaystyle{ F }[/math] is a permutation if and only if
for any [math]\displaystyle{ a\in\mathbb{F}^*_{2^n} }[/math].
Characterization of APN Permutations
Up to CCZ-equivalence, all of the APN permutations known so far belong to a few families, namely:[2]
1. APN monomial functions in odd dimension.
2. One infinite family of quadratic polynomials in dimension [math]\displaystyle{ 3n }[/math], with [math]\displaystyle{ n }[/math] odd and [math]\displaystyle{ gcd(n,3)=1 }[/math].[3]
3. Dillon's permutation in dimension 6.[4]
4. Two sporadic quadratic APN permutations in dimension 9.[5]
On the component functions
Clearly we have that no component function can be of degree 1. (This result is true for general APN maps)
For [math]\displaystyle{ n }[/math] even we have also that no component can be partially-bent[6]. This implies that, in even dimension, no component can be of degree 2.
Autocorrelation Functions of the Directional Derivatives
An [math]\displaystyle{ (n,n) }[/math]-function [math]\displaystyle{ F }[/math] is an APN permutation if and only if [1]
and
for any [math]\displaystyle{ a\in\mathbb{F}^*_{2^n} }[/math].
On APN Power Functions
For [math]\displaystyle{ n }[/math] odd, all power APN functions and the known APN binomials are permutations. When [math]\displaystyle{ n }[/math] is even, no APN function exists in a class of permutations including power permutations.
Specifically:
If a power function [math]\displaystyle{ F(x)=x^d }[/math] over [math]\displaystyle{ \mathbb{F}_{2^n} }[/math] is APN, then for every [math]\displaystyle{ x\in \mathbb{F}_{2^n} }[/math] we have [math]\displaystyle{ x^d=1 }[/math] if and only if [math]\displaystyle{ x^3=1 }[/math], that is, [math]\displaystyle{ F^{-1}(1)=\mathbb{F}_4\cap\mathbb{F}_{2^n}^*. }[/math]
If [math]\displaystyle{ n }[/math] is odd, then [math]\displaystyle{ gcd(d,2^n-1)=1 }[/math] and, if [math]\displaystyle{ n }[/math] is even, then [math]\displaystyle{ gcd(d,2^n-1)=3 }[/math].
Consequently, APN power functions are permutations if [math]\displaystyle{ n }[/math] is odd, and are three-to-one over [math]\displaystyle{ \mathbb{F}_{2^n}^* }[/math] if [math]\displaystyle{ n }[/math] is even.[7]
APN Permutations and Codes
Any linear subspace [math]\displaystyle{ C }[/math] of [math]\displaystyle{ \mathbb{F}_2^n }[/math] of dimension [math]\displaystyle{ k }[/math] is called a binary linear code of length [math]\displaystyle{ n }[/math] and dimension [math]\displaystyle{ k }[/math] and is denoted by [math]\displaystyle{ [n,k,d] }[/math], where [math]\displaystyle{ d }[/math] is the minimum Hamming distance of [math]\displaystyle{ C }[/math].
Any linear [math]\displaystyle{ [n,k,d]- }[/math]code [math]\displaystyle{ C }[/math] is associated with its dual [math]\displaystyle{ [n,n-k,d^{\perp}]- }[/math]code, denoted by [math]\displaystyle{ C^{\perp} }[/math] and defined as [math]\displaystyle{ C^{\perp}=\{x\in\mathbb{F}_2^n\;|\;c\cdot x=0, \;\forall c\in C\}. }[/math]
Let [math]\displaystyle{ \mathcal{H} }[/math] be a binary [math]\displaystyle{ (r\times n) }[/math] matrix. We say that a linear binary code [math]\displaystyle{ C }[/math] of length [math]\displaystyle{ n }[/math] is defined by the parity check matrix [math]\displaystyle{ \mathcal{H} }[/math] if [math]\displaystyle{ C=\{c\in\mathbb{F}_2^n\;|\;c\mathcal{H}^t=0\}, }[/math] where [math]\displaystyle{ \mathcal{H}^t }[/math] is the transposed matrix of [math]\displaystyle{ \mathcal{H} }[/math].
APN (and AB) properties were expressed in terms of codes in [8]. In particular, we mention the following result:
Theorem. Let [math]\displaystyle{ F }[/math] be a function on [math]\displaystyle{ \mathbb{F}_{2^m} }[/math] such that [math]\displaystyle{ F(0) = 0 }[/math] and let [math]\displaystyle{ C_F }[/math] be the
[math]\displaystyle{ [2^m − 1,k,d]- }[/math]code defined by the parity check matrix
where each entry is viewed as a binary vector and [math]\displaystyle{ \alpha }[/math] is the primitive element of [math]\displaystyle{ \mathbb{F}_{2^m}. }[/math] Then:
1. The code [math]\displaystyle{ C_F }[/math] is such that [math]\displaystyle{ 3 \leq d \leq 5 }[/math].
2. [math]\displaystyle{ F }[/math] is APN if and only if [math]\displaystyle{ d = 5 }[/math].
3. [math]\displaystyle{ F }[/math] is AB if and only if the weight of every codeword in [math]\displaystyle{ C_F^{\perp} }[/math] lies in [math]\displaystyle{ \{0, 2^{m-1}, 2^{m-1}\pm 2^{m-1/2}\} }[/math].
A binary linear [math]\displaystyle{ [2^k-1,k,2^{k-1}]- }[/math]code [math]\displaystyle{ C }[/math] in [math]\displaystyle{ \mathbb{F}_2^n }[/math] is called simplex. Simplex codes constitute a family of linear error-correcting or error-detecting block codes, easily implemented as polynomial codes (i.e. codes whose encoding and decoding algorithms may be conveniently expressed in terms of polynomials over a base field).
A [math]\displaystyle{ 2k- }[/math]dimensional code [math]\displaystyle{ C }[/math] is called a double simplex code if it can be written as a direct sum of two simplex [math]\displaystyle{ [2^k-1,k,2^{k-1}]- }[/math]codes. The following result provides a connection between APN permutations and double simplex codes:
Theorem.[9] Let [math]\displaystyle{ F:\mathbb{F}_{2^n}\rightarrow\mathbb{F}_{2^n} }[/math] be APN, with [math]\displaystyle{ F(0)=0 }[/math].
[math]\displaystyle{ F }[/math] is CCZ-equivalent to an APN permutation if and only if [math]\displaystyle{ C_F^{\perp} }[/math] is a double simplex code, i.e. [math]\displaystyle{ C_F^{\perp}=C_1\oplus C_2 }[/math], where [math]\displaystyle{ C_1, C_2 }[/math] are simplex [math]\displaystyle{ [2^n-1,n,2^{n-1}]- }[/math]codes.
An APN Permutation in Dimension 6
In his paper [10], Hou conjectured that APN permutations did not exist in even dimension. He proved the following theorem that covers the case of [math]\displaystyle{ n=4 }[/math]:
Let [math]\displaystyle{ F\in\mathbb{F}_{2^n}[x] }[/math] be a permutation polynomial with [math]\displaystyle{ n=2m }[/math]. Then:
1. If [math]\displaystyle{ n=4 }[/math], then [math]\displaystyle{ F }[/math] is not APN.
2. If [math]\displaystyle{ F\in\mathbb{F}_{2^m}[x] }[/math], then [math]\displaystyle{ F }[/math] is not APN.
The question of whether APN permutations exist in even dimension was a long-standing problem until, in 2009, Dillon presented an APN permutation (of algebraic degree [math]\displaystyle{ n-2 }[/math] and nonlinearity [math]\displaystyle{ 2^{n-1}-2^{n/2} }[/math]) in dimension 6.
This function is CCZ-equivalent to the Kim function [math]\displaystyle{ \kappa(x)=x^3+x^{10}+ux^{24} }[/math] (where [math]\displaystyle{ u }[/math] is a primitive element of [math]\displaystyle{ \mathbb{F}_{2^6} }[/math]) and it is given by the polynomial
where [math]\displaystyle{ w=u^{-2} }[/math].[4]
It was used later in the cryptosystem Fides[11], which has been subsequently broken due to its weaknesses in the linear component.
Dillon's function is also EA-equivalent to an involution and it is studied further in the introduction of the butterfly construction[12]. Unfortunately, this construction does not allow obtaining APN permutations in more than six variables[13].
The Big Open APN Problem
The question of existence of APN permutations in even dimension [math]\displaystyle{ n\geq 8 }[/math] remains open. There exist nonexistent results within the following classes:
1. Plateaued functions (when APN, they have bent components);
2. A class of functions including power functions;
3. Functions whose univariate representation coefficients lie in [math]\displaystyle{ \mathbb{F}_{2^{n/2}} }[/math], or in [math]\displaystyle{ \mathbb{F}_{2^4} }[/math] for [math]\displaystyle{ n }[/math] divisible by 4; [10]
4. Functions whose univariate representation coefficients satisfy [math]\displaystyle{ \sum_{i=0}^{(2^n-1)/3}a_{3i}=0 }[/math]; [14]
5. Functions having at least one partially-bent component[6].
References
- ↑ 1.0 1.1 Thierry Berger, Anne Canteaut, Pascale Charpin, Yann Laigle-Chapuy, On Almost Perfect Nonlinear Functions Over GF(2^n), IEEE Transactions on Information Theory, 2006 Sep,52(9),4160-70
- ↑ Bartoli, D., Timpanella, M. On a conjecture on APN permutations. Cryptogr. Commun. 14, 925–931 (2022)
- ↑ Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inf. Theory 54(9), 4218–4229 (2008)
- ↑ 4.0 4.1 Browning, K., Dillon, J.F., McQuistan, M., Wolfe, A.J.: An APN permutation in dimension six. In: Post-proceedings of the 9-th International conference on Finite Fields and their applications, American Mathematical Society, vol. 518, pp. 33–42 (2010)
- ↑ Beierle, C., Leander, G.: New instances of quadratic APN functions, arXiv:2009.07204 (2020)
- ↑ 6.0 6.1 Marco Calderini, Massimiliano Sala, Irene Villa, A note on APN permutations in even dimension, Finite Fields and Their Applications, vol. 46, 1-16, 2017
- ↑ H. Dobbertin. Private Communication, 1998.
- ↑ Carlet, Claude & Charpin, Pascale & Zinoviev, Victor. (1998). Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems. Designs, Codes and Cryptography, vol. 15, p. 125-156.
- ↑ Browning, K.A. & Dillon, J.F. & Kibler, R.E. & McQuistan, M.T.. (2009). APN polynomials and related codes. Journal of Combinatorics, Information & System Sciences. 34.
- ↑ 10.0 10.1 X.-D. Hou. Affinity of Permutations of [math]\displaystyle{ \mathbb{F}_2^n }[/math]. Proceedings of Workshop on Coding and Cryptography WCC 2003, pp. 273-280, 2003. Completed version in Discrete Applied Mathematics 154 (2), pp. 313-325, 2006.
- ↑ B. Bilgin, A. Bogdanov, M. Knezevic, F. Mendel and Q. Wang. Fides: lightweight authenticated cipher with side-channel resistance for constrained hardware. Proceedings of International Workshop Cryptographic Hardware and Embedded Systems CHES 2013, Lecture Notes in Computer Science 8086, pp. 142-158, 2013.
- ↑ L. Perrin, A. Udovenko, A. Biryukov. Cryptanalysis of a theorem: decomposing the only known solution to the big APN problem. Proceedings of CRYPTO 2016, Lecture Notes in Computer Science 9815, part II, pp. 93-122, 2016.
- ↑ L. Perrin, A. Canteaut, S. Tian. If a generalized butterfly is APN then it operates on 6 bits. Special Issue on Boolean Functions and Their Applications 2018, Cryptography and Communications 11 (6), pp. 1147-1164, 2019.
- ↑ A. Canteaut. Differential cryptanalysis of Feistel ciphers and differentially uniform mappings. Proceedings of Selected Areas on Cryptography, SAC 1997, pp. 172-184, 1997.