Commutative Presemifields and Semifields: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
A <span class="definition">presemifield</span> is a ring with left and right distributivity and with no zero divisor. | A <span class="definition">presemifield</span> is a ring with left and right distributivity and with no zero divisor. | ||
A presemifield with a multiplicative identity is called a <span class="definition">semifield</span>. | A presemifield with a multiplicative identity is called a <span class="definition">semifield</span>. | ||
| Line 5: | Line 5: | ||
for <math>p</math> a prime, <math>n</math> a positive integer, <math>\mathbb{S}=(\mathbb{F}_{p^n},+)</math> additive group and <math>x\star y</math> multiplication linear in each variable. | for <math>p</math> a prime, <math>n</math> a positive integer, <math>\mathbb{S}=(\mathbb{F}_{p^n},+)</math> additive group and <math>x\star y</math> multiplication linear in each variable. | ||
Two presemifields <math>\mathbb{S}_1=(\mathbb{F}_{p^n},+,\star)</math> and <math>\mathbb{S}_2=(\mathbb{F}_{p^n},+,\circ)</math> are called <span class="definition">isotopic</span> if there exist three linear | Two presemifields <math>\mathbb{S}_1=(\mathbb{F}_{p^n},+,\star)</math> and <math>\mathbb{S}_2=(\mathbb{F}_{p^n},+,\circ)</math> are called <span class="definition">isotopic</span> if there exist three linear permutations <math>T,M,N</math> of <math>\mathbb{F}_{p^n}</math> such that | ||
<math>T(x\star y)=M(x)\circ N(y)</math>, | <math>T(x\star y)=M(x)\circ N(y)</math>, | ||
for any <math>x,y\in\mathbb{F}_{p^n}</math>. If <math>M=N</math> then they are called <span class="definition">strongly isotopic</span>. | for any <math>x,y\in\mathbb{F}_{p^n}</math>. If <math>M=N</math> then they are called <span class="definition">strongly isotopic</span>. | ||
Each commutative presemifields of odd order defines a [[Planar Functions|planar]] DO polynomial and viceversa: | Each commutative presemifields of odd order defines a [[Planar Functions|planar]] DO polynomial and viceversa: | ||
* given <math>\mathbb{S}=(\mathbb{F}_{p^n},+,\star)</math> let <math>F_\ | * given <math>\mathbb{S}=(\mathbb{F}_{p^n},+,\star)</math> let <math>F_\mathbb{S}(x)=\frac{1}{2}(x\star x)</math>; | ||
* given <math>F</math> let <math>\mathbb{S}_F=(\mathbb{F}_{p^n},+,\star)</math> defined by <math>x\star y=F(x+y)-F(x)-F(y)</math>. | * given <math>F</math> let <math>\mathbb{S}_F=(\mathbb{F}_{p^n},+,\star)</math> defined by <math>x\star y=F(x+y)-F(x)-F(y)</math>. | ||
Revision as of 10:29, 29 August 2019
A presemifield is a ring with left and right distributivity and with no zero divisor. A presemifield with a multiplicative identity is called a semifield. Any finite presemifield can be represented by , for a prime, a positive integer, additive group and multiplication linear in each variable.
Two presemifields and are called isotopic if there exist three linear permutations of such that , for any . If then they are called strongly isotopic. Each commutative presemifields of odd order defines a planar DO polynomial and viceversa:
- given let ;
- given let defined by .
Hence two quadratic planar functions are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have:
- are CCZ-equivalent if and only if are strongly isotopic;
- for odd, isotopic coincides with strongly isotopic;
- if are isotopic equivalent, then there exists a linear map such that is EA-equivalent to .