Commutative Presemifields and Semifields: Difference between revisions
No edit summary |
|||
| Line 50: | Line 50: | ||
are called left, middle and right nucleus of <math>\mathbb{S}</math>. | are called left, middle and right nucleus of <math>\mathbb{S}</math>. | ||
The set <math>N(\mathbb{S})=N_l(\mathbb{S})\cap N_m(\mathbb{S})\cap N_r(\mathbb{S})</math> is called the nucleus. | |||
All these sets are finite field and, when <math>\mathbb{S}</math> is commutative, <math>N_l(\mathbb{S})=N_r(\mathbb{S})\subseteq N_m(\mathbb{S})</math>. | |||
The order of the different nuclei are invariant under isotopism. | |||
==Properties== | ==Properties== | ||
Every commutative presemifield can be transformed into a commutative semifield. | |||
Hence two quadratic planar functions <math>F,F'</math> are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have: | Hence two quadratic planar functions <math>F,F'</math> are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have: | ||
* <math>F,F'</math> are CCZ-equivalent if and only if <math>\mathbb{S}_F,\mathbb{S}_{F'}</math> are strongly isotopic; | * <math>F,F'</math> are CCZ-equivalent if and only if <math>\mathbb{S}_F,\mathbb{S}_{F'}</math> are strongly isotopic; | ||
* for <math>n</math> odd, isotopic coincides with strongly isotopic; | * for <math>n</math> odd, isotopic coincides with strongly isotopic; | ||
* if <math>F,F'</math> are isotopic equivalent, then there exists a linear map <math>L</math> such that <math>F'</math> is EA-equivalent to <math>F(x+L(x))-F(x)-F(L(x))</math>. | * if <math>F,F'</math> are isotopic equivalent, then there exists a linear map <math>L</math> such that <math>F'</math> is EA-equivalent to <math>F(x+L(x))-F(x)-F(L(x))</math>. | ||
Revision as of 08:47, 5 September 2019
Background
For a prime and a positive integer let be the finite field with elements. Let be a map from the finite field to itself. Such function admits a unique representation as a polynomial of degree at most , i.e.
.
The function is
- linear if ,
- affine if it is the sum of a linear function and a constant,
- DO (Dembowski-Ostrim) polynomial if ,
- quadratic if it is the sum of a DO polynomial and an affine function.
For a positive integer, the function is called differentially -uniform if for any pairs , with , the equation admits at most Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} solutions.
A function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} is called planar or perfect nonlinear (PN) if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_F=1} . Obviously such functions exist only for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} an odd prime. In the even case the smallest possible case for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} is two (APN function).
For planar function we have that the all the nonzero derivatives, , are permutations.
Equivalence Relations
Two functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'} from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^n}} to itself are called:
- affine equivalent if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'=A_1\circ F\circ A_2} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1,A_2} are affine permutations;
- EA-equivalent (extended-affine) if , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is affine and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F''} is afffine equivalent to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} ;
- CCZ-equivalent if there exists an affine permutation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^n}\times\mathbb{F}_{p^n}} such that , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_F=\lbrace (x,F(x)) : x\in\mathbb{F}_{p^n}\rbrace} .
CCZ-equivalence is the most general known equivalence relation for functions which preserves differential uniformity. Affine and EA-equivalence are its particular cases. For the case of quadratic planar functions the isotopic equivalence is more general than CCZ-equivalence, where two maps are isotopic equivalent if the corresponding presemifields are isotopic.
On Presemifields and Semifields
A presemifield is a ring with left and right distributivity and with no zero divisor. A presemifield with a multiplicative identity is called a semifield. Any finite presemifield can be represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+,\star)} , for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} a prime, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} a positive integer, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+)} additive group and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\star y} multiplication linear in each variable.
Two presemifields and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}_2=(\mathbb{F}_{p^n},+,\circ)} are called isotopic if there exist three linear permutations Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T,M,N} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^n}} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(x\star y)=M(x)\circ N(y)} , for any Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,y\in\mathbb{F}_{p^n}} . If then they are called strongly isotopic. Each commutative presemifields of odd order defines a planar DO polynomial and viceversa:
- given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+,\star)} let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_\mathbb{S}(x)=\frac{1}{2}(x\star x)} ;
- given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}_F=(\mathbb{F}_{p^n},+,\star)} defined by .
Given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+,\star)} a finite semifield, the subsets
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_l(\mathbb{S})=\{\alpha\in\mathbb{S} : (\alpha\star x)\star y=\alpha\star(x\star y)} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,y\in\mathbb{S}\}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_m(\mathbb{S})=\{\alpha\in\mathbb{S} : (x\star\alpha)\star y=x\star(\alpha\star y)} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,y\in\mathbb{S}\}}
for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,y\in\mathbb{S}\}}
are called left, middle and right nucleus of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}} .
The set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N(\mathbb{S})=N_l(\mathbb{S})\cap N_m(\mathbb{S})\cap N_r(\mathbb{S})} is called the nucleus. All these sets are finite field and, when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}} is commutative, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_l(\mathbb{S})=N_r(\mathbb{S})\subseteq N_m(\mathbb{S})} . The order of the different nuclei are invariant under isotopism.
Properties
Every commutative presemifield can be transformed into a commutative semifield.
Hence two quadratic planar functions are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F,F'} are CCZ-equivalent if and only if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}_F,\mathbb{S}_{F'}} are strongly isotopic;
- for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} odd, isotopic coincides with strongly isotopic;
- if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F,F'} are isotopic equivalent, then there exists a linear map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'} is EA-equivalent to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x+L(x))-F(x)-F(L(x))} .