Plateaued Functions: Difference between revisions
No edit summary |
No edit summary |
||
Line 34: | Line 34: | ||
at <math>(a,b)</math>. If <math>\phi</math> is injective, resp. takes each value in its image set two times, then <math>f_{\phi,h}</math> is plateaued of amplitude <math>2^r</math>, resp. <math>2^{r+1}</math>. | at <math>(a,b)</math>. If <math>\phi</math> is injective, resp. takes each value in its image set two times, then <math>f_{\phi,h}</math> is plateaued of amplitude <math>2^r</math>, resp. <math>2^{r+1}</math>. | ||
= Characterization of Plateaued Functions <ref name="carletPlateuaed">Carlet C. Boolean and vectorial plateaued functions and APN functions. IEEE Transactions on Information Theory. 2015 Nov;61(11):6272-89.</ref> = | |||
== Characterization by the Derivatives == | |||
Using the fact that a Boolean function <math>f</math> is plateaued if and only if the expression <math>\sum_{a,b \in \mathbb{F}_2^n} (-1)^{DaDbf(x)}</math> does not depend on <math>x \in \mathbb{F}_2^n</math>, one can derive the following characterization. | |||
Let <math>F</math> be an <math>(n,m)</math>-function. Then: | |||
* F is plateuaed if and only if, for every <math>v \in \mathbb{F}_2^m</math>, the size of the set | |||
<div><math> \{ (a,b) \in (\mathbb{F}_2^n)^2 : D_aD_bF(x) = v \}</math></div> | |||
does not depend on <math>x</math>; | |||
* F is plateaued with single amplitude if and only if the size of the set depends neither on <math>x</math>, nor on <math>v \in \mathbb{F}_2^m</math> for <math>v \ne 0</math>. | |||
Moreover: | |||
* for every <math>F</math>, the value distribution of <math>D_aD_bF(x)</math> equals that of <math>D_aF(b) + D_aF(x)</math> when <math>(a,b)</math> ranges over <math>(\mathbb{F}_2^n)^2</math>; | |||
* if two plateaued functions <math>F,G</math> have the same distribution, then all of their component functions <math>u \cdot F, u\cdot G</math> have the same amplitude. | |||
=== Power Functions === | |||
Let <math>F(x) = x^d</math>. Then, for every $v,x,\lambda \in \mathbb{F}_{2^n}</math> with <math>\lambda \ne 0</math>, we have | |||
<div><math> | \{ (a,b) \in \mathbb{F}_{2^n}^2 : D_aF(b) + D_aF(x) = v \} | = | \{ (a,b) \in \mathbb{F}_{2^n}^2 : D_aF(b) + D_aF(x/\lambda) = v/\lambda^d \}|.</math></div> | |||
Then: | |||
* <math>F</math> is plateaued if and only if, for every <math>v \in \mathbb{F}_{2^n}</math>, we have | |||
<div><math>| \{ (a,b) \in \mathbb{F}_{2^n}^2 : D_aF(b) + D_aF(1) = v \} | = | \{ (a,b) \in \mathbb{F}_{2^n}^2 : D_aF(b) + D_aF(0) = v \}|;</math></div> | |||
* <math>F</math> is plateaued with single amplitude if and only if the size above does not, in addition, depend on <math>v \ne 0</math>. | |||
=== Functions with Unbalanced Components === | |||
Let <math>F</math> be an <math>(n,m)</math>-function. Then <math>F</math> is plateuaed with all components unbalanced if and only if, for every <math>v,x \in \mathbb{F}_{2}^n</math>, we have | |||
<div><math> | \{ (a,b) \in (\mathbb{F}_2^n)^2 : D_aD_bF(x) = v \}| = | \{ (a,b) \in (\mathbb{F}_2^n)^2 : F(a) + F(b) = v \}|.</math></div> | |||
Moreover, <math>F</math> is plateaued with single amplitude if and only if this value does not, in addition, depend on <math>v</math> for <math>v \ne 0</math>. |
Revision as of 18:53, 7 February 2019
Background and Definition
A Boolean function [math]\displaystyle{ f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2 }[/math] is said to be plateaued if its Walsh transform takes at most three distinct values, viz. [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \pm \mu }[/math] for some positive ineger [math]\displaystyle{ \mu }[/math] called the amplitude of [math]\displaystyle{ f }[/math].
This notion can be naturally extended to vectorial Boolean functions by applying it to each component. More precisely, if [math]\displaystyle{ F }[/math] is an [math]\displaystyle{ (n,m) }[/math]-function, we say that [math]\displaystyle{ F }[/math] is plateaued if all its component functions [math]\displaystyle{ u \cdot F }[/math] for [math]\displaystyle{ u \ne 0 }[/math] are plateaued. If all of the component functions are plateaued and have the same amplitude, we say that [math]\displaystyle{ F }[/math] is plateaued with single amplitude.
Equivalence relations
The class of functions that are plateaued with single amplitude is CCZ-invariant.
The class of plateaued functions is only EA-invariant.
Relations to other classes of functions
All bent and semi-bent Boolean functions are plateaued.
Any vectorial AB function is plateaued with single amplitude.
Constructions of Boolean plateaued functions
Primary constructons
Generalization of the Maiorana-MacFarland Functions [1]
The Maiorana-MacFarland class of bent functions can be generalized into the class of functions [math]\displaystyle{ f_{\phi,h} }[/math] of the form
for [math]\displaystyle{ x \in \mathbb{F}_2^r, y \in \mathbb{F}_2^s }[/math], where [math]\displaystyle{ r }[/math] and [math]\displaystyle{ s }[/math] are any positive integers, [math]\displaystyle{ n = r + s }[/math], [math]\displaystyle{ \phi : \mathbb{F}_2^s \rightarrow \mathbb{F}_2^r }[/math] is arbitrary and [math]\displaystyle{ h : \mathbb{F}_2^s \rightarrow \mathbb{F}_2 }[/math] is any Boolean function.
The Walsh transform of [math]\displaystyle{ f_{\phi,h} }[/math] takes the value
at [math]\displaystyle{ (a,b) }[/math]. If [math]\displaystyle{ \phi }[/math] is injective, resp. takes each value in its image set two times, then [math]\displaystyle{ f_{\phi,h} }[/math] is plateaued of amplitude [math]\displaystyle{ 2^r }[/math], resp. [math]\displaystyle{ 2^{r+1} }[/math].
Characterization of Plateaued Functions [2]
Characterization by the Derivatives
Using the fact that a Boolean function [math]\displaystyle{ f }[/math] is plateaued if and only if the expression [math]\displaystyle{ \sum_{a,b \in \mathbb{F}_2^n} (-1)^{DaDbf(x)} }[/math] does not depend on [math]\displaystyle{ x \in \mathbb{F}_2^n }[/math], one can derive the following characterization.
Let [math]\displaystyle{ F }[/math] be an [math]\displaystyle{ (n,m) }[/math]-function. Then:
- F is plateuaed if and only if, for every [math]\displaystyle{ v \in \mathbb{F}_2^m }[/math], the size of the set
does not depend on [math]\displaystyle{ x }[/math];
- F is plateaued with single amplitude if and only if the size of the set depends neither on [math]\displaystyle{ x }[/math], nor on [math]\displaystyle{ v \in \mathbb{F}_2^m }[/math] for [math]\displaystyle{ v \ne 0 }[/math].
Moreover:
- for every [math]\displaystyle{ F }[/math], the value distribution of [math]\displaystyle{ D_aD_bF(x) }[/math] equals that of [math]\displaystyle{ D_aF(b) + D_aF(x) }[/math] when [math]\displaystyle{ (a,b) }[/math] ranges over [math]\displaystyle{ (\mathbb{F}_2^n)^2 }[/math];
- if two plateaued functions [math]\displaystyle{ F,G }[/math] have the same distribution, then all of their component functions [math]\displaystyle{ u \cdot F, u\cdot G }[/math] have the same amplitude.
Power Functions
Let [math]\displaystyle{ F(x) = x^d }[/math]. Then, for every $v,x,\lambda \in \mathbb{F}_{2^n}</math> with [math]\displaystyle{ \lambda \ne 0 }[/math], we have
Then:
- [math]\displaystyle{ F }[/math] is plateaued if and only if, for every [math]\displaystyle{ v \in \mathbb{F}_{2^n} }[/math], we have
- [math]\displaystyle{ F }[/math] is plateaued with single amplitude if and only if the size above does not, in addition, depend on [math]\displaystyle{ v \ne 0 }[/math].
Functions with Unbalanced Components
Let [math]\displaystyle{ F }[/math] be an [math]\displaystyle{ (n,m) }[/math]-function. Then [math]\displaystyle{ F }[/math] is plateuaed with all components unbalanced if and only if, for every [math]\displaystyle{ v,x \in \mathbb{F}_{2}^n }[/math], we have
Moreover, [math]\displaystyle{ F }[/math] is plateaued with single amplitude if and only if this value does not, in addition, depend on [math]\displaystyle{ v }[/math] for [math]\displaystyle{ v \ne 0 }[/math].