Commutative Presemifields and Semifields: Difference between revisions

From Boolean
Jump to navigation Jump to search
(Created page with "=Introduction= A <span class="definition">semifields</span> os a romg with left and right distributivity and with no zero divisor. A presemifield with a multiplicative identit...")
 
No edit summary
Line 1: Line 1:
=Introduction=
=Introduction=
A <span class="definition">semifields</span> os a romg with left and right distributivity and with no zero divisor.
A <span class="definition">semifields</span> is a ring with left and right distributivity and with no zero divisor.
A presemifield with a multiplicative identity is called a <span class="definition">semifield</span>.
A presemifield with a multiplicative identity is called a <span class="definition">semifield</span>.
Any finite presemifield can be represented by <math>\mathbb{S}=(\mathbb{F}_{p^n},+,\star)</math>,
Any finite presemifield can be represented by <math>\mathbb{S}=(\mathbb{F}_{p^n},+,\star)</math>,

Revision as of 10:26, 29 August 2019

Introduction

A semifields is a ring with left and right distributivity and with no zero divisor. A presemifield with a multiplicative identity is called a semifield. Any finite presemifield can be represented by <math>\mathbb{S}=(\mathbb{F}_{p^n},+,\star)</math>, for <math>p</math> a prime, <math>n</math> a positive integer, <math>\mathbb{S}=(\mathbb{F}_{p^n},+)</math> additive group and <math>x\star y</math> multiplication linear in each variable.

Two presemifields <math>\mathbb{S}_1=(\mathbb{F}_{p^n},+,\star)</math> and <math>\mathbb{S}_2=(\mathbb{F}_{p^n},+,\circ)</math> are called isotopic if there exist three linear permutation <math>T,M,N</math> of <math>\mathbb{F}_{p^n}</math> such that <math>T(x\star y)=M(x)\circ N(y)</math>, for any <math>x,y\in\mathbb{F}_{p^n}</math>. If <math>M=N</math> then they are called strongly isotopic. Each commutative presemifields of odd order defines a planar DO polynomial and viceversa:

  • given <math>\mathbb{S}=(\mathbb{F}_{p^n},+,\star)</math> let <math>F_\mathcal{S}(x)=\frac{1}{2}(x\star x)</math>;
  • given <math>F</math> let <math>\mathbb{S}_F=(\mathbb{F}_{p^n},+,\star)</math> defined by <math>x\star y=F(x+y)-F(x)-F(y)</math>.

Hence two quadratic planar functions <math>F,F'</math> are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have:

  • <math>F,F'</math> are CCZ-equivalent if and only if <math>\mathbb{S}_F,\mathbb{S}_{F'}</math> are strongly isotopic;
  • for <math>n</math> odd, isotopic coincides with strongly isotopic;
  • if <math>F,F'</math> are isotopic equivalent, then there exists a linear map <math>L</math> such that <math>F'</math> is EA-equivalent to <math>F(x+L(x))-F(x)-F(L(x))</math>.