Commutative Presemifields and Semifields: Difference between revisions

From Boolean
Jump to navigation Jump to search
Line 83: Line 83:
* <math>x^{p^s+1}-a^{p^t-1}x^{p^{3t}+p^{t+s}}</math> over <math>\mathbb{F}_{p^{4t}}, a</math> primitive, <math>p^s\equiv p^t\equiv1</math> mod 4, <math>2t/gcd(s,2t)</math> odd;
* <math>x^{p^s+1}-a^{p^t-1}x^{p^{3t}+p^{t+s}}</math> over <math>\mathbb{F}_{p^{4t}}, a</math> primitive, <math>p^s\equiv p^t\equiv1</math> mod 4, <math>2t/gcd(s,2t)</math> odd;
* <math>a^{1-p}x^2+x^{2p^m}+a^{1-p}T(x)-T(x)^{p^m}</math>, with <math>T(x)=\sum_{i=0}^k(-1)^ix^{p^{2i}(p^2+1)}+a^{p-1}\sum_{j=0}^{k-1}(-1)^{k+j}x^{p^{2j+1}(p^2+1)}</math>, over <math>\mathbb{F}_{p^{2m}}</math> for <math>a\in\mathbb{F}^\star_{p^2}, m=2k+1</math>.
* <math>a^{1-p}x^2+x^{2p^m}+a^{1-p}T(x)-T(x)^{p^m}</math>, with <math>T(x)=\sum_{i=0}^k(-1)^ix^{p^{2i}(p^2+1)}+a^{p-1}\sum_{j=0}^{k-1}(-1)^{k+j}x^{p^{2j+1}(p^2+1)}</math>, over <math>\mathbb{F}_{p^{2m}}</math> for <math>a\in\mathbb{F}^\star_{p^2}, m=2k+1</math>.
==Cases defined for <i>p</i>=3==
* <math>x^{10}\pm x^6-x^2 \mbox{ over } \mathbb{F}_{p^n} \mbox{ with } n</math> odd (Coulter-Matthews and Ding-Yuan semifields);
* <math>L(t^2(x))+D(t(x))+\frac{1}{2}x^2, \mbox{ over } \mathbb{F}_{3^{2k}} \mbox{ with } k \mbox{ odd, } t(x)=x^{3^k}-x, \beta\in\mathbb{F}_{3^{2k}}\setminus\mathbb{F}_{3^k}, \alpha=t(\beta), L(x)=\alpha^{-5}x^3+x, D(x)=-\alpha^{-10}x^{10}</math> (Ganley semifields);
* <math>L(t^2(x))+\frac{1}{2}x^2, \mbox{ over } \mathbb{F}_{3^{2k}} \mbox{ with } k \mbox{ odd, } t(x)=x^{3^k}-x, \beta\in\mathbb{F}_{3^{2k}}\setminus\mathbb{F}_{3^k}, \alpha=t(\beta), L(x)=-x^9-\alpha x^3+(1-\alpha^4)x</math> (Cohen-Ganley semifileds);
* <math>L(t^2(x))+\frac{1}{2}x^2, \mbox{ over } \mathbb{F}_{3^{10}} \mbox{ with } t(x)=x^{243}-x, \beta\in\mathbb{F}_{3^{10}}\setminus\mathbb{F}_{3^5}, \alpha=t(\beta), L(x)=-(\alpha^{-53}x^{27}+\alpha^{-18}x^9-x)</math> (Penttila-Williams semifileds);
* <math>L(t^2(x))+D(t(x))+\frac{1}{2}x^2, \mbox{ over } \mathbb{F}_{3^{8}} \mbox{ with } t(x)=x^9-x, L(x)=x^{243}+x^9, D(x)=x^{246}+x^{82}-x^{10}</math> (Coulter-Henderson-Kosick semifield);
* <math>x^2+x^{90} \mbox{ over } \mathbb{F}_{3^5}</math>.

Revision as of 09:13, 23 September 2019

Background

For a prime and a positive integer let be the finite field with elements. Let be a map from the finite field to itself. Such function admits a unique representation as a polynomial of degree at most , i.e.

.

The function is

  • linear if ,
  • affine if it is the sum of a linear function and a constant,
  • DO (Dembowski-Ostrim) polynomial if ,
  • quadratic if it is the sum of a DO polynomial and an affine function.

For a positive integer, the function is called differentially -uniform if for any pairs , with , the equation admits at most solutions.

A function is called planar or perfect nonlinear (PN) if . Obviously such functions exist only for an odd prime. In the even case the smallest possible case for is two (APN function).

For planar function we have that the all the nonzero derivatives, , are permutations.

Equivalence Relations

Two functions and from to itself are called:

  • affine equivalent if , where are affine permutations;
  • EA-equivalent (extended-affine) if , where is affine and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F''} is afffine equivalent to ;
  • CCZ-equivalent if there exists an affine permutation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^n}\times\mathbb{F}_{p^n}} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}(G_F)=G_{F'}} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_F=\lbrace (x,F(x)) : x\in\mathbb{F}_{p^n}\rbrace} .

CCZ-equivalence is the most general known equivalence relation for functions which preserves differential uniformity. Affine and EA-equivalence are its particular cases. For the case of quadratic planar functions the isotopic equivalence is more general than CCZ-equivalence, where two maps are isotopic equivalent if the corresponding presemifields are isotopic.

On Presemifields and Semifields

A presemifield is a ring with left and right distributivity and with no zero divisor. A presemifield with a multiplicative identity is called a semifield. Any finite presemifield can be represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+,\star)} , for a prime, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} a positive integer, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+)} additive group and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\star y} multiplication linear in each variable. Every commutative presemifield can be transformed into a commutative semifield[1].

Two presemifields Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}_1=(\mathbb{F}_{p^n},+,\star)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}_2=(\mathbb{F}_{p^n},+,\circ)} are called isotopic if there exist three linear permutations Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T,M,N} of such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(x\star y)=M(x)\circ N(y)} , for any Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,y\in\mathbb{F}_{p^n}} . If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M=N} then they are called strongly isotopic. Each commutative presemifields of odd order defines a planar DO polynomial and viceversa:

  • given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+,\star)} let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_\mathbb{S}(x)=\frac{1}{2}(x\star x)} ;
  • given let defined by .

Given a finite semifield, the subsets

for all

for all

for all

are called left, middle and right nucleus of .

The set is called the nucleus. All these sets are finite field and, when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}} is commutative, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_l(\mathbb{S})=N_r(\mathbb{S})\subseteq N_m(\mathbb{S})} . The order of the different nuclei are invariant under isotopism.

Properties

Hence two quadratic planar functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F,F'} are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F,F'} are CCZ-equivalent if and only if the corresponding presemifileds are strongly isotopic[2];
  • for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} odd, isotopic coincides with strongly isotopic;
  • if are isotopic equivalent, then there exists a linear map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'} is EA-equivalent to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x+L(x))-F(x)-F(L(x))} ;
  • any commutative presemifield of odd order can generate at most two CCZ-equivalence classes of planar DO polynomials;
  • if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}_2} are isotopic commutative semifields of characteristic Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} with order of middle nuclei and nuclei Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p^m} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p^k} respectively, then either one of the following is satisfied:
    • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m/k} is odd and the semifields are strongly isotopic,
    • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m/k} is even and the semifields are strongly isotopic or the only isotopisms are of the form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\alpha\star N,N,L)} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha\in N_m(\mathbb{S}_1)} non-square.

Known cases od planar functions and commutative semifields

Among the known example of planar functions, the only ones that are non-quadratic are the power functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{\frac{3^t+1}{2}}} defined over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{3^n}} , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} is odd and gcd(Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t,n} )=1.

In the following the list of some known infinite families of planar functions (and corresponding commutative semifields):

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2} over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^n}} (finite field );
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{p^t+1}} over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^n}} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n/gcd(t,n)} odd (Albert's commutative twisted fields);
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(t^2(x))+\frac{1}{2}x^2} over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^{2km}}} with (Dickson semifields);
    • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (ax)^{p^s+1}-(ax)^{p^k(p^s+1)}+x^{p^k+1}}
    • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle bx^{p^s+1}+(bx^{p^s+1})^{p^k}+cx^{p^k+1}}

over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^{2k}}} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,b\in\mathbb{F}^\star_{2^{2k}}, b} not square, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c\in\mathbb{F}_{2^{2k}}\setminus\mathbb{F}_{2^k}, gcd(k+s,2k)=gcd(k+s,k)} and for the first one also . Without loss of generality it is possible to take Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=1} and fix a value for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} ;

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{p^s+1}-a^{p^t-1}x^{p^t+p^{2t+s}}} over primitive, mod odd;
  • over primitive, mod 4, odd;
  • , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(x)=\sum_{i=0}^k(-1)^ix^{p^{2i}(p^2+1)}+a^{p-1}\sum_{j=0}^{k-1}(-1)^{k+j}x^{p^{2j+1}(p^2+1)}} , over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^{2m}}} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\in\mathbb{F}^\star_{p^2}, m=2k+1} .

Cases defined for p=3

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{10}\pm x^6-x^2 \mbox{ over } \mathbb{F}_{p^n} \mbox{ with } n} odd (Coulter-Matthews and Ding-Yuan semifields);
  • (Ganley semifields);
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(t^2(x))+\frac{1}{2}x^2, \mbox{ over } \mathbb{F}_{3^{2k}} \mbox{ with } k \mbox{ odd, } t(x)=x^{3^k}-x, \beta\in\mathbb{F}_{3^{2k}}\setminus\mathbb{F}_{3^k}, \alpha=t(\beta), L(x)=-x^9-\alpha x^3+(1-\alpha^4)x} (Cohen-Ganley semifileds);
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(t^2(x))+\frac{1}{2}x^2, \mbox{ over } \mathbb{F}_{3^{10}} \mbox{ with } t(x)=x^{243}-x, \beta\in\mathbb{F}_{3^{10}}\setminus\mathbb{F}_{3^5}, \alpha=t(\beta), L(x)=-(\alpha^{-53}x^{27}+\alpha^{-18}x^9-x)} (Penttila-Williams semifileds);
  • (Coulter-Henderson-Kosick semifield);
  • .
  1. Coulter R. S., Henderson M. Commutative presemifields and semifields. Advances in Math. 217, pp. 282-304, 2008
  2. Budaghyan L., Helleseth T. On Isotopism of Commutative Presemifields and CCZ-Equivalence of Functions. Special Issue on Cryptography of International Journal of Foundations of Computer Science, v. 22/6), pp- 1243-1258, 2011