Boolean Functions
Introduction
Let be the vector space of dimension n over the finite field with two elements. The vector space can also be endowed with the structure of the field, the finite field with . A function is called a Boolean function in dimenstion n (or n-variable Boolean function).
Given , the support of x is the set . The Hamming weight of x is the size of its support (). Similarly the Hamming weight of a Boolean function f is the size of its support, i.e. the set . The Hamming distance of two functions f,g is the size of the set .
Representation of a Boolean function
There exist different ways to represent a Boolean function. A simple, but often not efficient, one is by its truth-table. For example consider the following truth-table for a 3-variable Boolean function f.
| x | f(x) | ||
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
Algebraic normal form
An n-variable Boolean function can be represented by a multivariate polynomial over of the form
Such representation is unique and it is the algebraic normal form of f (shortly ANF).
The degree of the ANF is called the algebraic degree of the function, .