APN Permutations

From Boolean
Revision as of 11:58, 15 January 2019 by Nikolay (talk | contribs) (Created page with "= Characterization of Permutations = == Component Functions == An <math>(n,n)</math>-function <math>F</math> is a permutation if and only if all of its components <math>F_\l...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Characterization of Permutations

Component Functions

An [math]\displaystyle{ (n,n) }[/math]-function [math]\displaystyle{ F }[/math] is a permutation if and only if all of its components [math]\displaystyle{ F_\lambda }[/math] for [math]\displaystyle{ \lambda \in \mathbb{F}_{2^n}^* }[/math] are balanced.

Autocorrelation Functions of the Directional Derivatives

The characterization in terms of the component functions given above can be equivalently expressed as

[math]\displaystyle{ \sum_{a \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n }[/math]

for any [math]\displaystyle{ \lambda \in \mathbb{F}_{2^n}^* }[/math].

Equivalently [1], [math]\displaystyle{ F }[/math] is a permutation if and only if

[math]\displaystyle{ \sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n }[/math]

for any [math]\displaystyle{ \lambda \in \mathbb{F}_{2^n}^* }[/math].

Characterization of APN Permutations

Autocorrelation Functions of the Directional Derivatives

An [math]\displaystyle{ (n,n) }[/math]-function [math]\displaystyle{ F }[/math] is an APN permutation if and only if [1]

[math]\displaystyle{ \sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}(D_af_\lambda) = -2^n }[/math]

and

[math]\displaystyle{ \sum_{\lambda \in \mathbb{F}_{2^n}^*} \mathcal{F}^2(D_af_\lambda) = 2^{2n} }[/math]

for any [math]\displaystyle{ a \in \mathbb{F}_{2^n}^* }[/math].

  1. 1.0 1.1 Thierry Berger, Anne Canteaut, Pascale Charpin, Yann Laigle-Chapuy, On Almost Perfect Nonlinear Functions Over GF(2^n), IEEE Transactions on Information Theory, 2006 Sep,52(9),4160-70