APN Permutations
Characterization of Permutations
Component Functions
An [math]\displaystyle{ (n,n) }[/math]-function [math]\displaystyle{ F }[/math] is a permutation if and only if all of its components [math]\displaystyle{ F_\lambda }[/math] for [math]\displaystyle{ \lambda \in \mathbb{F}_{2^n}^* }[/math] are balanced.
Autocorrelation Functions of the Directional Derivatives
The characterization in terms of the component functions given above can be equivalently expressed as
for any [math]\displaystyle{ \lambda \in \mathbb{F}_{2^n}^* }[/math].
Equivalently [1], [math]\displaystyle{ F }[/math] is a permutation if and only if
for any [math]\displaystyle{ \lambda \in \mathbb{F}_{2^n}^* }[/math].
Characterization of APN Permutations
Autocorrelation Functions of the Directional Derivatives
An [math]\displaystyle{ (n,n) }[/math]-function [math]\displaystyle{ F }[/math] is an APN permutation if and only if [1]
and
for any [math]\displaystyle{ a \in \mathbb{F}_{2^n}^* }[/math].