Plateaued Functions
Background and Definition
A Boolean function <math>f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2</math> is said to be plateaued if its Walsh transform takes at most three distinct values, viz. <math>0</math> and <math>\pm \mu</math> for some positive ineger <math>\mu</math> called the amplitude of <math>f</math>.
This notion can be naturally extended to vectorial Boolean functions by applying it to each component. More precisely, if <math>F</math> is an <math>(n,m)</math>-function, we say that <math>F</math> is plateaued if all its component functions <math>u \cdot F</math> for <math>u \ne 0</math> are plateaued. If all of the component functions are plateaued and have the same amplitude, we say that <math>F</math> is plateaued with single amplitude.
Equivalence relations
The class of functions that are plateaued with single amplitude is CCZ-invariant.
The class of plateaued functions is only EA-invariant.
Relations to other classes of functions
All bent and semi-bent Boolean functions are plateaued.
Any vectorial AB function is plateaued with single amplitude.
Constructions of Boolean plateaued functions
Primary constructons
Generalization of the Maiorana-MacFarland Functions [1]
The Maiorana-MacFarland class of bent functions can be generalized into the class of functions <math>f_{\phi,h}</math> of the form
for <math>x \in \mathbb{F}_2^r, y \in \mathbb{F}_2^s</math>, where <math>r</math> and <math>s</math> are any positive integers, <math>n = r + s</math>, <math>\phi : \mathbb{F}_2^s \rightarrow \mathbb{F}_2^r</math> is arbitrary and <math>h : \mathbb{F}_2^s \rightarrow \mathbb{F}_2</math> is any Boolean function.
The Walsh transform of <math>f_{\phi,h}</math> takes the value
at <math>(a,b)</math>. If <math>\phi</math> is injective, resp. takes each value in its image set two times, then <math>f_{\phi,h}</math> is plateaued of amplitude <math>2^r</math>, resp. <math>2^{r+1}</math>.
- ↑ Camion P, Carlet C, Charpin P, Sendrier N. On Correlation-immune functions. InAdvances in Cryptology—CRYPTO’91 1992 (pp. 86-100). Springer Berlin/Heidelberg.