Plateaued Functions
Background and Definition
A Boolean function <math>f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2</math> is said to be plateaued if its Walsh transform takes at most three distinct values, viz. <math>0</math> and <math>\pm \mu</math> for some positive ineger <math>\mu</math> called the amplitude of <math>f</math>.
This notion can be naturally extended to vectorial Boolean functions by applying it to each component. More precisely, if <math>F</math> is an <math>(n,m)</math>-function, we say that <math>F</math> is plateaued if all its component functions <math>u \cdot F</math> for <math>u \ne 0</math> are plateaued. If all of the component functions are plateaued and have the same amplitude, we say that <math>F</math> is plateaued with single amplitude.
The characterization by means of the derivatives below suggests the following definition: a v.B.f. <math>F</math> is said to be strongly-plateuaed if, for every <math>a</math> and every <math>v</math>, the size of the set <math>\{ b \in \mathbb{F}_2^n : D_aD_bF(x) = v \}</math> does not depend on <math>x</math>, or, equivalently, the size of the set <math>\{ b \in \mathbb{F}_2^n : D_aF(b) = D_aF(x) + v \}</math> does not depend on <math>x</math>.
Equivalence relations
The class of functions that are plateaued with single amplitude is CCZ-invariant.
The class of plateaued functions is only EA-invariant.
Relations to other classes of functions
All bent and semi-bent Boolean functions are plateaued.
Any vectorial AB function is plateaued with single amplitude.
Constructions of Boolean plateaued functions
Primary constructons
Generalization of the Maiorana-MacFarland Functions [1]
The Maiorana-MacFarland class of bent functions can be generalized into the class of functions <math>f_{\phi,h}</math> of the form
for <math>x \in \mathbb{F}_2^r, y \in \mathbb{F}_2^s</math>, where <math>r</math> and <math>s</math> are any positive integers, <math>n = r + s</math>, <math>\phi : \mathbb{F}_2^s \rightarrow \mathbb{F}_2^r</math> is arbitrary and <math>h : \mathbb{F}_2^s \rightarrow \mathbb{F}_2</math> is any Boolean function.
The Walsh transform of <math>f_{\phi,h}</math> takes the value
at <math>(a,b)</math>. If <math>\phi</math> is injective, resp. takes each value in its image set two times, then <math>f_{\phi,h}</math> is plateaued of amplitude <math>2^r</math>, resp. <math>2^{r+1}</math>.
Characterization of Plateaued Functions [2]
Characterization by the Derivatives
Using the fact that a Boolean function <math>f</math> is plateaued if and only if the expression <math>\sum_{a,b \in \mathbb{F}_2^n} (-1)^{DaDbf(x)}</math> does not depend on <math>x \in \mathbb{F}_2^n</math>, one can derive the following characterization.
Let <math>F</math> be an <math>(n,m)</math>-function. Then:
- F is plateuaed if and only if, for every <math>v \in \mathbb{F}_2^m</math>, the size of the set
does not depend on <math>x</math>;
- F is plateaued with single amplitude if and only if the size of the set depends neither on <math>x</math>, nor on <math>v \in \mathbb{F}_2^m</math> for <math>v \ne 0</math>.
Moreover:
- for every <math>F</math>, the value distribution of <math>D_aD_bF(x)</math> equals that of <math>D_aF(b) + D_aF(x)</math> when <math>(a,b)</math> ranges over <math>(\mathbb{F}_2^n)^2</math>;
- if two plateaued functions <math>F,G</math> have the same distribution, then all of their component functions <math>u \cdot F, u\cdot G</math> have the same amplitude.
Power Functions
Let <math>F(x) = x^d</math>. Then, for every $v,x,\lambda \in \mathbb{F}_{2^n}</math> with <math>\lambda \ne 0</math>, we have
Then:
- <math>F</math> is plateaued if and only if, for every <math>v \in \mathbb{F}_{2^n}</math>, we have
- <math>F</math> is plateaued with single amplitude if and only if the size above does not, in addition, depend on <math>v \ne 0</math>.
Functions with Unbalanced Components
Let <math>F</math> be an <math>(n,m)</math>-function. Then <math>F</math> is plateuaed with all components unbalanced if and only if, for every <math>v,x \in \mathbb{F}_{2}^n</math>, we have
Moreover, <math>F</math> is plateaued with single amplitude if and only if this value does not, in addition, depend on <math>v</math> for <math>v \ne 0</math>.
Strongly-Plateaued Functions
A Boolean function is strongly-plateaued if and only if its partially-bent. A v.B.f. is strongly-plateaued if and only if all of its component functions are partially-bent. In particular, bent and quadratic Boolean and vectorial functions are strongly-plateaued.
The image set <math>{\rm Im}(D_aF)</math> of any derivative of a strongly-plateaued function <math>F</math> is an affine space.
Characterization by the Auto-Correlation Functions
Recall that the autocorrelation function of a Boolean function <math>f</math> is defined as <math>{\Delta_f}(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + f(x+a)}</math>.
An <math>n</math>-variable Boolean function <math>f</math> is plateaued if and only if, for every <math>x \in \mathbb{F}_2^n</math>, we have
An <math>(n,m)</math>-function <math>F</math> is plateaued if and only if, for every <math>x \in \mathbb{F}_2^n, u \in \mathbb{F}_2^m</math>, we have
Furthermore, <math>F</math> is plateaued with single amplitude if and only if, for every <math>x \in \mathbb{F}_2^n, u \in \mathbb{F}_2^m</math>, we have
Alternatively, <math>F</math> is plateuaed if and only if, for every <math>x,v \in \mathbb{F}_2^n</math>, we have