Differential uniformity
Given a vectorial Boolean function [math]\displaystyle{ F:\mathbb{F}_{2^n}\rightarrow\mathbb{F}_{2^m} }[/math], it is called differentially [math]\displaystyle{ \delta }[/math]-uniform if the equation [math]\displaystyle{ F(x+a)-F(x)=b }[/math] admits at most [math]\displaystyle{ \delta }[/math] solutions for every non-zero [math]\displaystyle{ a\in\mathbb{F}_{2^n} }[/math] and [math]\displaystyle{ b\in\mathbb{F}_{2^m} }[/math].
This definition can be generalized to the case of functions [math]\displaystyle{ F:\mathbb{F}_{p^n}\rightarrow\mathbb{F}_{p^m} }[/math]. Functions with the smallest value for [math]\displaystyle{ \delta }[/math] contribute an optimal resistance to the differential attack.
The smallest possible value is [math]\displaystyle{ \delta=p^{n-m} }[/math], such functions are called perfect nonlinear (PN) and they exist only for [math]\displaystyle{ p }[/math] odd and [math]\displaystyle{ m\le n/2 }[/math]. (see also planar functions)
For [math]\displaystyle{ p=2 }[/math] and [math]\displaystyle{ m=n }[/math] the smallest value is [math]\displaystyle{ \delta=2 }[/math] and such optimal funtions are called almost perfect nonlinear (APN).
Differential uniformity is invariant under affine, EA- and CCZ-equivalence.