Anonymous
Not logged in
Log in
Boolean
Search
Known infinite families of quadratic APN polynomials over GF(2^n)
From Boolean
Namespaces
Page
Discussion
More
More
Page actions
Read
View source
History
Revision as of 08:53, 30 October 2019 by
Ivi062
(
talk
|
contribs
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
N
∘
{\displaystyle N^{\circ }}
Functions
Conditions
References
C1-C2
x
2
s
+
1
+
u
2
k
−
1
x
2
i
k
+
2
m
k
+
s
{\displaystyle x^{2^{s}+1}+u^{2^{k}-1}x^{2^{ik}+2^{mk+s}}}
n
=
p
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
p
∈
{
3
,
4
}
,
i
=
s
k
mod
p
,
m
=
p
−
i
,
n
≥
12
,
u
primitive in
F
2
n
∗
{\displaystyle n=pk,\gcd(k,3)=\gcd(s,3k)=1,p\in \{3,4\},i=sk{\bmod {p}},m=p-i,n\geq 12,u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[1]
C3
s
x
q
+
1
+
x
2
i
+
1
+
x
q
(
2
i
+
1
)
+
c
x
2
i
q
+
1
+
c
q
x
2
i
+
q
{\displaystyle sx^{q+1}+x^{2^{i}+1}+x^{q(2^{i}+1)}+cx^{2^{i}q+1}+c^{q}x^{2^{i}+q}}
q
=
2
m
,
n
=
2
m
,
{\displaystyle q=2^{m},n=2m,}
g
c
d
(
i
,
m
)
=
1
{\displaystyle gcd(i,m)=1}
,
c
∈
F
2
n
,
s
∈
F
2
n
∖
F
q
,
X
2
i
+
1
+
c
X
2
i
+
c
q
X
+
1
has no solution
x
{\displaystyle c\in \mathbb {F} _{2^{n}},s\in \mathbb {F} _{2^{n}}\setminus \mathbb {F} _{q},X^{2^{i}+1}+cX^{2^{i}}+c^{q}X+1{\text{ has no solution }}x}
s.t.
x
q
+
1
=
1
{\displaystyle x^{q+1}=1}
[2]
C4
x
3
+
a
−
1
T
r
n
(
a
3
x
9
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}(a^{3}x^{9})}
a
≠
0
{\displaystyle a\neq 0}
[3]
C5
x
3
+
a
−
1
T
r
n
3
(
a
3
x
9
+
a
6
x
18
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{3}x^{9}+a^{6}x^{18})}
3
|
n
{\displaystyle 3|n}
,
a
≠
0
{\displaystyle a\neq 0}
[4]
C6
x
3
+
a
−
1
T
r
n
3
(
a
6
x
18
+
a
12
x
36
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{6}x^{18}+a^{12}x^{36})}
3
|
n
,
a
≠
0
{\displaystyle 3|n,a\neq 0}
[4]
C7-C9
u
x
2
s
+
1
+
u
2
k
x
2
−
k
+
2
k
+
s
+
v
x
2
−
k
+
1
+
w
u
2
k
+
1
x
2
s
+
2
k
+
s
{\displaystyle ux^{2^{s}+1}+u^{2^{k}}x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^{k}+1}x^{2^{s}+2^{k+s}}}
n
=
3
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
v
,
w
∈
F
2
k
,
v
w
≠
1
,
3
|
(
k
+
s
)
,
u
primitive in
F
2
n
∗
{\displaystyle n=3k,\gcd(k,3)=\gcd(s,3k)=1,v,w\in \mathbb {F} _{2^{k}},vw\neq 1,3|(k+s),u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[5]
C10
(
x
+
x
2
m
)
2
k
+
1
+
u
′
(
u
x
+
u
2
m
x
2
m
)
(
2
k
+
1
)
2
i
+
u
(
x
+
x
2
m
)
(
u
x
+
u
2
m
x
2
m
)
{\displaystyle (x+x^{2{^{m}}})^{2^{k}+1}+u'(ux+u^{2^{m}}x^{2^{m}})^{(2^{k}+1)2^{i}}+u(x+x^{2^{m}})(ux+u^{2^{m}}x^{2^{m}})}
n
=
2
m
,
m
⩾
2
{\displaystyle n=2m,m\geqslant 2}
even,
gcd
(
k
,
m
)
=
1
{\displaystyle \gcd(k,m)=1}
and
i
⩾
2
{\displaystyle i\geqslant 2}
even,
u
primitive in
F
2
n
∗
,
u
′
∈
F
2
m
not a cube
{\displaystyle u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*},u'\in \mathbb {F} _{2^{m}}{\text{ not a cube }}}
[6]
C11
L
(
x
)
2
i
x
+
L
(
x
)
x
2
i
{\displaystyle L(x)^{2^{i}}x+L(x)x^{2^{i}}}
n
=
k
m
,
gcd
(
n
,
i
)
=
1
,
L
(
x
)
=
∑
j
=
0
k
−
1
a
j
x
2
j
m
{\displaystyle n=km,\gcd(n,i)=1,L(x)=\sum _{j=0}^{k-1}a_{j}x^{2^{jm}}}
satisfies the conditions in Theorem 3.6 of [7]
[7]
C12
x
3
+
a
(
x
2
i
+
1
)
2
k
+
b
x
3
⋅
2
m
+
c
(
x
2
i
+
m
+
2
m
)
2
k
{\displaystyle x^{3}+a(x^{2^{i}+1})^{2^{k}}+bx^{3\cdot 2^{m}}+c(x^{2^{i+m}+2^{m}})^{2^{k}}}
n
=
2
m
=
10
,
(
a
,
b
,
c
)
=
(
β
,
1
,
0
,
0
)
,
i
=
3
,
k
=
2
,
β
primitive in
F
2
2
{\displaystyle n=2m=10,(a,b,c)=(\beta ,1,0,0),i=3,k=2,\beta {\text{ primitive in }}\mathbb {F} _{2^{2}}}
[8]
n
=
2
m
,
m
o
d
d
,
3
∤
m
,
(
a
,
b
,
c
)
=
(
β
,
β
2
,
1
)
,
β
primitive in
F
2
2
,
i
∈
{
m
−
2
,
m
,
2
m
−
1
,
(
m
−
2
)
−
1
mod
n
}
{\displaystyle n=2m,m\ odd,3\nmid m,(a,b,c)=(\beta ,\beta ^{2},1),\beta {\text{ primitive in }}\mathbb {F} _{2^{2}},i\in \{m-2,m,2m-1,(m-2)^{-1}\mod n\}}
↑
Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.
↑
Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
↑
Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
↑
4.0
4.1
Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
↑
Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
↑
Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
↑
Villa I, Budaghyan L, Calderini M, Carlet C, Coulter R. Constructing APN functions through isotopic shift. Cryptology ePrint Archive, Report 2018/769
↑
Budaghyan L, Helleseth T, Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994
Navigation
Navigation
Main page
Tables
Recent changes
Random page
Help
Wiki tools
Wiki tools
Special pages
Page tools
Page tools
User page tools
More
What links here
Related changes
Printable version
Permanent link
Page information
Page logs