Known infinite families of quadratic APN polynomials over GF(2^n)
From Boolean
| Functions | Conditions | References | |
|---|---|---|---|
| C1-C2 | , | [1] | |
| C3 | , | [2] | |
| C4 | [3] | ||
| C5 | , | [4] | |
| C6 | [4] | ||
| C7-C9 | , | [5] | |
| C10 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x+x^{2{^m}})^{2^k+1}+u'(ux+u^{2^{m}} x^{2^{m}})^{(2^k+1)2^i}+u(x+x^{2^{m}})(ux+u^{2^{m}} x^{2^{m}})} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2m, m\geqslant 2} even, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gcd(k, m)=1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \geqslant 2} even, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u\text{ primitive in } \mathbb{F}_{2^n}^*, u' \in \mathbb{F}_{2^m} \text{ not a cube }} | [6] |
| C11 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(x)^{2^i}x+L(x)x^{2^i}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=km, m>1, \gcd(n,i)=1, L(x)=\sum_{j=0}^{k-1}a_jx^{2^{jm}}} satisfies the conditions in Theorem 3.6 of [7] | [7] |
| C12 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ut(x)(x^q+x)+t(x)^{2^{2i}+2^{3i}}+at(x)^{2^{2i}}(x^q+x)^{2^i}+b(x^q+x)^{2^i+1}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2m, q=2^m, \gcd(m,i)=1, t(x)=u^qx+x^qu} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^{2^i+1}+aX+b \mbox{ has no solution over }\mathbb{F}_{2^m}} | [8] |
| C13 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = 2m = 10, (a,b,c) = (\beta,1,0,0), i = 3, k = 2, \beta \text{ primitive in } \mathbb{F}_{2^2}} | [9] |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = 2m, m\ odd, 3 \nmid m, (a,b,c) = (\beta, \beta^2, 1), \beta \text{ primitive in } \mathbb{F}_{2^2}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \in \{ m-2, m, 2m-1, (m-2)^{-1} \mod n \}} |
- ↑ Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.
- ↑ Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
- ↑ Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
- ↑ 4.0 4.1 Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
- ↑ Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
- ↑ Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
- ↑ Budaghyan L, Calderini M, Carlet C, Coulter R, Villa I. Constructing APN functions through isotopic shift. Cryptology ePrint Archive, Report 2018/769
- ↑ Taniguchi H. On some quadratic APN functions. Des. Codes Cryptogr. 2019, https://doi.org/10.1007/s10623-018-00598-2
- ↑ Budaghyan L, Helleseth T, Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994
