APN functions obtained via polynomial expansion in small dimensions

From Boolean
Revision as of 17:27, 1 September 2021 by Nikolay (talk | contribs) (Created page with "<table> <tr> <th>ID</th> <th>Representative</th> <th>Equivalent to</th> <th>Orthoderivative diff. spec.</th> </tr> <tr> <td>8.1</td> <td><math>\alpha^{170}x^{192} + \alpha^{85...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
ID Representative Equivalent to Orthoderivative diff. spec.
8.1 <math>\alpha^{170}x^{192} + \alpha^{85}x^{132} + x^6 + x^3</math> SW 19 <math>0^{37872}, 2^{22788}, 4^{4068}, 6^{492}, 8^{60}</math>
8.2 <math>x^{66} + \alpha^{85}x^{33} + x^{18} + x^9 + x^3</math> SW 11 <math>0^{38040}, 2^{22461}, 4^{4218}, 6^{513}, 8^{36}, 10^{12}</math>
8.3 <math>x^{66} + \alpha^{85}x^{33} + \alpha^{17}x^9 + \alpha^{102}x^6 + x^3</math> SW 13 <math>0^{38076}, 2^{22311}, 4^{4374}, 6^{495}, 8^{24}</math>
8.4 <math>\alpha^{85}x^{132} + \alpha^{85}x^{72} + x^9 + x^6 + x^3</math> SW 12 <math>0^{38160}, 2^{22104}, 4^{4536}, 6^{456}, 8^{24}</math>
8.5 <math>x^{66} + x^{12} + \alpha^{85}x^6 + x^3</math> SW 6 <math>0^{38160}, 2^{22164}, 4^{4428}, 6^{492}, 8^{36}</math>
8.6 <math>x^{129} + \alpha^{85}x^{24} + x^{12} + x^9 + x^3</math> SW 8 <math>0^{38184}, 2^{22179}, 4^{4338}, 6^{531}, 8^{48}</math>
8.7 <math>\alpha^{170}x^{132} + \alpha^{85}x^{66} + \alpha^{85}x^{18} + x^3</math> new <math>0^{38196}, 2^{22008}, 4^{4608}, 6^{456}, 8^{12}</math>
8.8 <math>\alpha^{85}x^{132} + \alpha^{85}x^{72} + x^{36} + x^{24} + x^3</math> SW 9 <math>0^{38256}, 2^{22116}, 4^{4230}, 6^{648}, 8^{30}</math>
8.9 <math>\alpha^{85}x^{192} + x^{72} + x^{33} + x^{24} + x^9 + \alpha^{153}x^6</math> SW 17 <math>0^{38388}, 2^{21723}, 4^{4626}, 6^{507}, 8^{36}</math>
8.10 <math>\alpha^{221}x^{96} + \alpha^{221}x^{33} + x^{12} + x^9 + x^6 + \alpha^{187}*x^3</math> SW 10 <math>0^{38439}, 2^{21618}, 4^{4671}, 6^{528}, 8^{24}</math>
8.11 <math>\alpha^{238}x^{144} + x^{132} + \alpha^{51}x^{96} + \alpha^{119}x^{48} + x^{33} + x^9</math> SW 16 <math>0^{38457}, 2^{21552}, 4^{4743}, 6^{510}, 8^{18}</math>
8.12 <math>\alpha^{204}x^{160} + \alpha^{51}x^{48} + \alpha^{102}x^{12} + \alpha^{204}x^{10} + x^9</math> SW 22 <math>0^{38844}, 2^{20974}, 4^{4764}, 6^{654}, 8^{44}</math>
8.13 <math>\alpha^{160}x^{132} + \alpha^{10}x^{72} + x^{48} + \alpha x^{34} + \alpha^3x^{33} + \alpha^{48}x^{18} + x^{17} + x^3</math> B 31 <math>0^{39150}, 2^{20463}, 4^{4920}, 6^{675}, 8^{54}, 10^{12}, 12^6</math>
8.14 <math>x^{144} + \alpha^{85}x^{96} + \alpha^{170}x^{80} + \alpha^{85}x^{65} + \alpha^{85}x^{17} + x^9 + x^5</math> B 12668 <math>0^{39408}, 2^{20072}, 4^{4922}, 6^{798}, 8^{70}, 10^{10}</math>
8.15 <math>x^{66} + \alpha^{170}x^{40} + x^{18} + \alpha^{85}x^5 + x^3</math> Y 4346 <math>0^{39408}, 2^{20218}, 4^{4692}, 6^{838}, 8^{104}, 10^{12}, 12^8</math>
8.16 <math>x^{160} + x^{132} + x^{80} + x^{68} + x^6 + x^3</math> SW 20 <math>0^{39692}, 2^{19752}, 4^{4756}, 6^{978}, 8^{72}, 10^{26}, 12^4</math>