APN Permutations
Characterization of Permutations
Component Functions
An (π,π)-function πΉ is a permutation if and only if all of its components πΉΞ» for Ξ» β π½*2π are balanced.
Autocorrelation Functions of the Directional Derivatives
The characterization in terms of the component functions given above can be equivalently expressed as
for any Ξ» β π½*2π.
Equivalently [1], πΉ is a permutation if and only if
for any Ξ» β π½*2π.
Characterization of APN Permutations
[2] Up to CCZ-equivalence, all of the APN permutations known so far belong to a few families, namely:
1. APN monomial functions in odd dimension.
2. One infinite family of quadratic polynomials in dimension [math]\displaystyle{ 3n }[/math], with [math]\displaystyle{ n }[/math] odd and [math]\displaystyle{ gcd(n,3)=1 }[/math].[3]
3. Dillon's permutation in dimension 6.[4]
4. Two sporadic quadratic APN permutations in dimension 9.[5]
On the component functions
Clearly we have that no component function can be of degree 1. (This result is true for general APN maps)
For π even we have also that no component can be partially-bent[6]. This implies that, in even dimension, no component can be of degree 2.
Autocorrelation Functions of the Directional Derivatives
An (π,π)-function πΉ is an APN permutation if and only if [1]
and
for any π β π½*2π.
On APN Power Functions
For [math]\displaystyle{ n }[/math] odd, all power APN functions and the known APN binomials are permutations. When [math]\displaystyle{ n }[/math] is even, no APN function exists in a class of permutations including power permutations.
Specifically:
If a power function [math]\displaystyle{ F(x)=x^d }[/math] over [math]\displaystyle{ \mathbb{F}_{2^n} }[/math] is APN, then for every [math]\displaystyle{ x\in \mathbb{F}_{2^n} }[/math] we have [math]\displaystyle{ x^d=1 }[/math] if and only if [math]\displaystyle{ x^3=1 }[/math], that is, [math]\displaystyle{ F^{-1}(1)=\mathbb{F}_4\cap\mathbb{F}_{2^n}^*. }[/math]
If [math]\displaystyle{ n }[/math] is odd, then [math]\displaystyle{ gcd(d,2^n-1)=1 }[/math] and, if [math]\displaystyle{ n }[/math] is even, then [math]\displaystyle{ gcd(d,2^n-1)=3 }[/math].
Consequently, APN power functions are permutations if [math]\displaystyle{ n }[/math] is odd, and are three-to-one over [math]\displaystyle{ \mathbb{F}_{2^n}^* }[/math] if [math]\displaystyle{ n }[/math] is even.[7]
APN Permutations and Codes
Let [math]\displaystyle{ F:\mathbb{F}_{2^n}\rightarrow\mathbb{F}_{2^n} }[/math] be APN, with [math]\displaystyle{ F(0)=0 }[/math].
[math]\displaystyle{ F }[/math] is CCZ-equivalent to an APN permutation if and only if [math]\displaystyle{ C_F^{\perp} }[/math] is a double simplex code (i.e. [math]\displaystyle{ C_F^{\perp}=C_1\oplus C_2 }[/math], where [math]\displaystyle{ C_1, C_2 }[/math] are [math]\displaystyle{ [2^n-1,n,2^{n-1}]- }[/math]codes).
An APN Permutation of Dimension 6
In his paper [8], Hou conjectured that APN permutations did not exist in even dimension. He proved the following theorem that covers the case of [math]\displaystyle{ n=4 }[/math]:
Let [math]\displaystyle{ F\in\mathbb{F}_{2^n}[x] }[/math] be a permutation polynomial with [math]\displaystyle{ n=2m }[/math]. Then:
1. If [math]\displaystyle{ n=4 }[/math], then [math]\displaystyle{ F }[/math] is not APN.
2. If [math]\displaystyle{ F\in\mathbb{F}_{2^m}[x] }[/math], then [math]\displaystyle{ F }[/math] is not APN.
The question of whether APN permutations exist in even dimension was a long-standing problem until, in 2009, Dillon presented an APN permutation in dimension 6[4].
That is the function [math]\displaystyle{ F(x)=ux^3+ux^{10}+u^2x^{24}, }[/math] where [math]\displaystyle{ u }[/math] is a primitive element of [math]\displaystyle{ \mathbb{F}_{2^6} }[/math]. [math]\displaystyle{ F }[/math] is CCZ-equivalent to the Kim function [math]\displaystyle{ \kappa(x)=x^3+x^{10}+ux^{24} }[/math].
The question of existence of APN permutations in even dimension [math]\displaystyle{ n\geq 8 }[/math] remains open. There exist nonexistent results within the following classes:
1. Plateaued functions (when APN, they have bent components);
2. A class of functions including power functions;
3. Functions whose univariate representation coefficients lie in [math]\displaystyle{ \mathbb{F}_{2^{n/2}} }[/math], or in [math]\displaystyle{ \mathbb{F}_{2^4} }[/math] for [math]\displaystyle{ n }[/math] divisible by 4; [8]
4. Functions whose univariate representation coefficients satisfy [math]\displaystyle{ \sum_{i=0}^{(2^n-1)/3}a_{3i}=0 }[/math]; [9]
5. Functions having at least one partially-bent component[6].
- β 1.0 1.1 Thierry Berger, Anne Canteaut, Pascale Charpin, Yann Laigle-Chapuy, On Almost Perfect Nonlinear Functions Over GF(2^n), IEEE Transactions on Information Theory, 2006 Sep,52(9),4160-70
- β Bartoli, D., Timpanella, M. On a conjecture on APN permutations. Cryptogr. Commun. 14, 925β931 (2022)
- β Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inf. Theory 54(9), 4218β4229 (2008)
- β 4.0 4.1 Browning, K., Dillon, J.F., McQuistan, M., Wolfe, A.J.: An APN permutation in dimension six. In: Post-proceedings of the 9-th International conference on Finite Fields and their applications, American Mathematical Society, vol. 518, pp. 33β42 (2010)
- β Beierle, C., Leander, G.: New instances of quadratic APN functions, arXiv:2009.07204 (2020)
- β 6.0 6.1 Marco Calderini, Massimiliano Sala, Irene Villa, A note on APN permutations in even dimension, Finite Fields and Their Applications, vol. 46, 1-16, 2017
- β H. Dobbertin. Private Communication, 1998.
- β 8.0 8.1 X.-D. Hou. Affinity of Permutations of [math]\displaystyle{ \mathbb{F}_2^n }[/math]. Proceedings of Workshop on Coding and Cryptography WCC 2003, pp. 273-280, 2003. Completed version in Discrete Applied Mathematics 154 (2), pp. 313-325, 2006.
- β A. Canteaut. Differential cryptanalysis of Feistel ciphers and differentially uniform mappings. Proceedings of Selected Areas on Cryptography, SAC 1997, pp. 172-184, 1997.