Known infinite families of quadratic APN polynomials over GF(2^n)
From Boolean
Revision as of 14:09, 4 January 2019 by
Fady
(
talk
|
contribs
)
(Created page with "<table> <tr> <th><math>N^\circ</math></th> <th>Functions</th> <th>Conditions</th> <th>References</th> </tr> <tr> <td>C1-C2</td> <td><math>x^{2^s+1}+u^{2^k-1}x^{2^{ik}+2^{mk+s...")
(diff) ← Older revision |
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to navigation
Jump to search
N
∘
{\displaystyle N^{\circ }}
Functions
Conditions
References
C1-C2
x
2
s
+
1
+
u
2
k
−
1
x
2
i
k
+
2
m
k
+
s
{\displaystyle x^{2^{s}+1}+u^{2^{k}-1}x^{2^{ik}+2^{mk+s}}}
n
=
p
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
p
∈
{
3
,
4
}
,
i
=
s
k
mod
p
,
m
=
p
−
i
,
n
≥
12
,
u
primitive in
F
2
n
∗
{\displaystyle n=pk,\gcd(k,3)=\gcd(s,3k)=1,p\in \{3,4\},i=sk\mod p,m=p-i,n\geq 12,u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[1]
C3
s
x
q
+
1
+
x
2
i
+
1
+
x
q
(
2
i
+
1
)
+
c
x
2
i
q
+
1
+
c
q
x
2
i
+
q
{\displaystyle sx^{q+1}+x^{2^{i}+1}+x^{q(2^{i}+1)}+cx^{2^{i}q+1}+c^{q}x^{2^{i}+q}}
q
=
2
m
,
n
=
2
m
,
g
c
d
(
i
,
m
)
=
1
,
c
∈
F
2
n
,
s
∈
F
2
n
∖
F
q
,
X
2
i
+
1
+
c
X
2
i
+
c
q
X
+
1
has no solution
x
{\displaystyle q=2^{m},n=2m,gcd(i,m)=1,c\in \mathbb {F} _{2^{n}},s\in \mathbb {F} _{2^{n}}\setminus \mathbb {F} _{q},X^{2^{i}+1}+cX^{2^{i}}+c^{q}X+1{\text{ has no solution }}x}
s.t.
x
q
+
1
=
1
{\displaystyle x^{q+1}=1}
[2]
C4
x
3
+
a
−
1
T
r
n
(
a
3
x
9
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}(a^{3}x^{9})}
a
≠
0
{\displaystyle a\neq 0}
[3]
C5
x
3
+
a
−
1
T
r
n
3
(
a
3
x
9
+
a
6
x
18
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{3}x^{9}+a^{6}x^{18})}
3
|
n
{\displaystyle 3|n}
,
a
≠
0
{\displaystyle a\neq 0}
[4]
C6
x
3
+
a
−
1
T
r
n
3
(
a
6
x
18
+
a
12
x
36
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{6}x^{18}+a^{12}x^{36})}
3
|
n
,
a
≠
0
{\displaystyle 3|n,a\neq 0}
[4]
C7-C9
u
x
2
s
+
1
+
u
2
k
x
2
−
k
+
2
k
+
s
+
v
x
2
−
k
+
1
+
w
u
2
k
+
1
,
x
2
s
+
2
k
+
s
{\displaystyle ux^{2^{s}+1}+u^{2^{k}}x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^{k}+1},x^{2^{s}+2^{k+s}}}
n
=
3
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
v
,
w
∈
F
2
k
,
v
w
≠
1
,
3
|
(
k
+
s
)
u
primitive in
F
2
n
∗
{\displaystyle n=3k,\gcd(k,3)=\gcd(s,3k)=1,v,w\in \mathbb {F} _{2^{k}},vw\neq 1,3|(k+s)u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[5]
C10
(
x
+
x
2
m
)
2
k
+
1
+
u
′
(
u
x
+
u
2
m
x
2
m
)
(
2
k
+
1
)
2
i
+
u
(
x
+
x
2
m
)
(
u
x
+
u
2
m
x
2
m
)
{\displaystyle (x+x^{2m})^{2^{k}+1}+u'(ux+u^{2m}x^{2m})^{(2^{k}+1)2^{i}}+u(x+x^{2m})(ux+u^{2m}x^{2m})}
n
=
2
m
,
m
⩾
2
{\displaystyle n=2m,m\geqslant 2}
even,
gcd
(
k
,
m
)
=
1
,
{\displaystyle \gcd(k,m)=1,}
and
i
⩾
2
{\displaystyle i\geqslant 2}
even
u
primitive in
F
2
n
∗
,
u
′
∈
F
2
m
not a cube
{\displaystyle u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*},u'\in \mathbb {F} _{2^{m}}{\text{ not a cube }}}
[6]
C11
a
2
x
2
2
m
+
1
+
1
+
b
2
x
2
m
+
1
+
1
+
a
x
2
2
m
+
2
+
b
x
2
m
+
2
+
(
c
2
+
c
)
x
3
{\displaystyle a^{2}x^{2^{2m+1}+1}+b^{2}x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^{2}+c)x^{3}}
n
=
3
m
,
m
odd
L
(
x
)
=
a
x
2
2
m
+
b
x
2
m
+
c
x
satisfies the conditions in lemma 8 of
[
3
]
{\displaystyle n=3m,m\ {\text{odd}}\ L(x)=ax^{2^{2m}}+bx^{2m}+cx\ {\text{satisfies the conditions in lemma 8 of}}\ [3]}
[7]
↑
L. Budaghyan, C. Carlet, G. Leander,
Two Classes of Quadratic APN Binomials Inequivalent to Power Functions
, IEEE Trans. Inform. Theory 54(9), 2008, pp. 4218-4229
↑
L. Budaghyan and C. Carlet.
Classes of Quadratic APN Trinomials and Hexanomials and Related Structures
. {\em IEEE Trans. Inform. Theory}, vol. 54, no. 5, pp. 2354-2357, 2008.
↑
L. Budaghyan, C. Carlet and G.Leander,
Constructinig new APN functions from known ones, Finite Fields and their applications
, vol.15, issue 2, Apr. 2009, pp. 150-159.
↑
4.0
4.1
L. Budaghyan, C. Carlet and G.Leander,
On a Construction of quadratic APN functions, Proceedings of IEEE information Theory workshop
ITW'09, Oct. 2009, 374-378.
↑
Bracken, C., Byrne, E., Markin, N., & Mcguire, G. (2011).
A few more quadratic APN functions. Cryptography and Communications
, 3(1), 43-53.
↑
Göloğlu, Faruk.
Almost perfect nonlinear trinomials and hexanomials.
Finite Fields and Their Applications 33 (2015): 258-282.
↑
Villa, I., Budaghyan, L., Calderini, M., Carlet, C., & Coulter, R.
On Isotopic Construction of APN Functions.
SETA 2018
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
LANGUAGE
Views
Read
View source
View history
More
Search
Navigation
Main page
Tables
Recent changes
Random page
Help
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information