Anonymous
Not logged in
Log in
Boolean
Search
Known infinite families of quadratic APN polynomials over GF(2^n)
From Boolean
Namespaces
Page
Discussion
More
More
Page actions
Read
View source
History
Revision as of 14:09, 4 January 2019 by
Fady
(
talk
|
contribs
)
(Created page with "<table> <tr> <th><math>N^\circ</math></th> <th>Functions</th> <th>Conditions</th> <th>References</th> </tr> <tr> <td>C1-C2</td> <td><math>x^{2^s+1}+u^{2^k-1}x^{2^{ik}+2^{mk+s...")
(diff) ← Older revision |
Latest revision
(
diff
) |
Newer revision →
(
diff
)
N
∘
{\displaystyle N^{\circ }}
Functions
Conditions
References
C1-C2
x
2
s
+
1
+
u
2
k
−
1
x
2
i
k
+
2
m
k
+
s
{\displaystyle x^{2^{s}+1}+u^{2^{k}-1}x^{2^{ik}+2^{mk+s}}}
n
=
p
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
p
∈
{
3
,
4
}
,
i
=
s
k
mod
p
,
m
=
p
−
i
,
n
≥
12
,
u
primitive in
F
2
n
∗
{\displaystyle n=pk,\gcd(k,3)=\gcd(s,3k)=1,p\in \{3,4\},i=sk\mod p,m=p-i,n\geq 12,u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[1]
C3
s
x
q
+
1
+
x
2
i
+
1
+
x
q
(
2
i
+
1
)
+
c
x
2
i
q
+
1
+
c
q
x
2
i
+
q
{\displaystyle sx^{q+1}+x^{2^{i}+1}+x^{q(2^{i}+1)}+cx^{2^{i}q+1}+c^{q}x^{2^{i}+q}}
q
=
2
m
,
n
=
2
m
,
g
c
d
(
i
,
m
)
=
1
,
c
∈
F
2
n
,
s
∈
F
2
n
∖
F
q
,
X
2
i
+
1
+
c
X
2
i
+
c
q
X
+
1
has no solution
x
{\displaystyle q=2^{m},n=2m,gcd(i,m)=1,c\in \mathbb {F} _{2^{n}},s\in \mathbb {F} _{2^{n}}\setminus \mathbb {F} _{q},X^{2^{i}+1}+cX^{2^{i}}+c^{q}X+1{\text{ has no solution }}x}
s.t.
x
q
+
1
=
1
{\displaystyle x^{q+1}=1}
[2]
C4
x
3
+
a
−
1
T
r
n
(
a
3
x
9
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}(a^{3}x^{9})}
a
≠
0
{\displaystyle a\neq 0}
[3]
C5
x
3
+
a
−
1
T
r
n
3
(
a
3
x
9
+
a
6
x
18
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{3}x^{9}+a^{6}x^{18})}
3
|
n
{\displaystyle 3|n}
,
a
≠
0
{\displaystyle a\neq 0}
[4]
C6
x
3
+
a
−
1
T
r
n
3
(
a
6
x
18
+
a
12
x
36
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{6}x^{18}+a^{12}x^{36})}
3
|
n
,
a
≠
0
{\displaystyle 3|n,a\neq 0}
[4]
C7-C9
u
x
2
s
+
1
+
u
2
k
x
2
−
k
+
2
k
+
s
+
v
x
2
−
k
+
1
+
w
u
2
k
+
1
,
x
2
s
+
2
k
+
s
{\displaystyle ux^{2^{s}+1}+u^{2^{k}}x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^{k}+1},x^{2^{s}+2^{k+s}}}
n
=
3
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
v
,
w
∈
F
2
k
,
v
w
≠
1
,
3
|
(
k
+
s
)
u
primitive in
F
2
n
∗
{\displaystyle n=3k,\gcd(k,3)=\gcd(s,3k)=1,v,w\in \mathbb {F} _{2^{k}},vw\neq 1,3|(k+s)u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[5]
C10
(
x
+
x
2
m
)
2
k
+
1
+
u
′
(
u
x
+
u
2
m
x
2
m
)
(
2
k
+
1
)
2
i
+
u
(
x
+
x
2
m
)
(
u
x
+
u
2
m
x
2
m
)
{\displaystyle (x+x^{2m})^{2^{k}+1}+u'(ux+u^{2m}x^{2m})^{(2^{k}+1)2^{i}}+u(x+x^{2m})(ux+u^{2m}x^{2m})}
n
=
2
m
,
m
⩾
2
{\displaystyle n=2m,m\geqslant 2}
even,
gcd
(
k
,
m
)
=
1
,
{\displaystyle \gcd(k,m)=1,}
and
i
⩾
2
{\displaystyle i\geqslant 2}
even
u
primitive in
F
2
n
∗
,
u
′
∈
F
2
m
not a cube
{\displaystyle u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*},u'\in \mathbb {F} _{2^{m}}{\text{ not a cube }}}
[6]
C11
a
2
x
2
2
m
+
1
+
1
+
b
2
x
2
m
+
1
+
1
+
a
x
2
2
m
+
2
+
b
x
2
m
+
2
+
(
c
2
+
c
)
x
3
{\displaystyle a^{2}x^{2^{2m+1}+1}+b^{2}x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^{2}+c)x^{3}}
n
=
3
m
,
m
odd
L
(
x
)
=
a
x
2
2
m
+
b
x
2
m
+
c
x
satisfies the conditions in lemma 8 of
[
3
]
{\displaystyle n=3m,m\ {\text{odd}}\ L(x)=ax^{2^{2m}}+bx^{2m}+cx\ {\text{satisfies the conditions in lemma 8 of}}\ [3]}
[7]
↑
L. Budaghyan, C. Carlet, G. Leander,
Two Classes of Quadratic APN Binomials Inequivalent to Power Functions
, IEEE Trans. Inform. Theory 54(9), 2008, pp. 4218-4229
↑
L. Budaghyan and C. Carlet.
Classes of Quadratic APN Trinomials and Hexanomials and Related Structures
. {\em IEEE Trans. Inform. Theory}, vol. 54, no. 5, pp. 2354-2357, 2008.
↑
L. Budaghyan, C. Carlet and G.Leander,
Constructinig new APN functions from known ones, Finite Fields and their applications
, vol.15, issue 2, Apr. 2009, pp. 150-159.
↑
4.0
4.1
L. Budaghyan, C. Carlet and G.Leander,
On a Construction of quadratic APN functions, Proceedings of IEEE information Theory workshop
ITW'09, Oct. 2009, 374-378.
↑
Bracken, C., Byrne, E., Markin, N., & Mcguire, G. (2011).
A few more quadratic APN functions. Cryptography and Communications
, 3(1), 43-53.
↑
Göloğlu, Faruk.
Almost perfect nonlinear trinomials and hexanomials.
Finite Fields and Their Applications 33 (2015): 258-282.
↑
Villa, I., Budaghyan, L., Calderini, M., Carlet, C., & Coulter, R.
On Isotopic Construction of APN Functions.
SETA 2018
Navigation
Navigation
Main page
Tables
Recent changes
Random page
Help
Wiki tools
Wiki tools
Special pages
Page tools
Page tools
User page tools
More
What links here
Related changes
Printable version
Permanent link
Page information
Page logs