Differentially 4-uniform permutation

From Boolean
Functions Conditions References
and t is odd [1][2]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{2^{2i}-2^i+1}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle gcd(i,n) = 2, n = 2t} and t is odd [3]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{2^n-2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = 2t} (inverse) [2][4]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{2^{2t}-2^t+1}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = 4t} and t is odd [5]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha x^{2^s+1}+\alpha^{2^t}x^{{2-t}+2^{t+s}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = 3t, t/2} is odd, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle gcd(n,s) = 2, 3|t + s} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is a primitive element in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{2^n}} [6]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{-1} + \mathrm {Tr}(x+ (x^{-1}+1)^{-1})} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2t} is even [7]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{-1} + \mathrm {Tr}(x^{-3(2^{k}+1)}+ (x^{-1}+1)^{3(2^{k}+1)})} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2t} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\leq k \leq t-1} [7]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_u(F^{-1}(x))|_{H_u}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2t,F(x)} is a quadratic APN permutation on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb F} _ {2^{n+1}}, u \in {\mathbb F^{*}} _ {2^{n+1}}} [8]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle\sum_{i=0}^{2^{n}-3} x^{i}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2t, } t is odd [9]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{-1} + t(x^{2^{s}}+x)^{2^{sn}-1}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} is even Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in {\mathbb F}^{*} _ {2^{s}},} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s, n} are odd, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in {\mathbb F}^{*} _ {2^{s}}} [10]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{2^{k}+1} + t(x^{2^{s}}+x)^{2^{sn}-1}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n, s} are odd, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in {\mathbb F}^{*} _ {2^{s}}, gcd(k, sn) = 1 } [11]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x, x_n) \to}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ((1+x_{n})x^{-1}+x_{n}\alpha x^{-1}, f(x, x_{n}))}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is even Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x, \alpha \in {\mathbb F} _ {2^{n-1}}, x_n \in {\mathbb F} _ {2}, \mathrm{Tr}^{n-1}_1(\alpha) = \mathrm{Tr}^{n-1}_1(\frac{1}{\alpha}) = 1,}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x, x_n)} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n, 1)-} function

[12]
  1. Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.). IEEE transactions on Information Theory. 1968 Jan;14(1):154-6.
  2. 2.0 2.1 Nyberg K. Differentially uniform mappings for cryptography. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 55-64).
  3. Kasami T. The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Information and Control. 1971 May 1;18(4):369-94.
  4. Lachaud G, Wolfmann J. The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE transactions on information theory. 1990 May;36(3):686-92.
  5. Bracken C, Leander G. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields and Their Applications. 2010 Jul 1;16(4):231-42.
  6. Bracken C, Tan CH, Tan Y. Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields and Their Applications. 2012 May 1;18(3):537-46.
  7. 7.0 7.1 Tan Y, Qu L, Tan CH, Li C. New Families of Differentially 4-Uniform Permutations over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb F} _ {2^{2k}} } . InInternational Conference on Sequences and Their Applications 2012 Jun 4 (pp. 25-39). Springer, Berlin, Heidelberg.
  8. Li Y, Wang M. Constructing differentially 4-uniform permutations overFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb F} _ {2^{2m}} } from quadratic APN permutations over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb F} _ {2^{2m+1}}} . Designs, Codes and Cryptography. 2014 Aug 1;72(2):249-64.
  9. Yu Y, Wang M, Li Y. Constructing low differential uniformity functions from known ones. Chinese Journal of Electronics. 2013;22(3):495-9.
  10. Zha Z, Hu L, Sun S. Constructing new differentially 4-uniform permutations from the inverse function. Finite Fields and Their Applications. 2014 Jan 1;25:64-78.
  11. Xu G, Cao X, Xu S. Constructing new differentially 4-uniform permutations and APN functions over finite fields. Cryptography and Communications-Discrete Structures, Boolean Functions and Sequences. Pre-print. 2014.
  12. Carlet C, Tang D, Tang X, Liao Q. New construction of differentially 4-uniform bijections. InInternational Conference on Information Security and Cryptology 2013 Nov 27 (pp. 22-38). Springer, Cham.