Differentially 4-uniform permutations

From Boolean


Functions Conditions References
and t is odd [1][2]
and t is odd [3]
(inverse) [2][4]
and t is odd [5]
is odd, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle gcd(n,s) = 2, 3|t + s} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is a primitive element in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{2^n}} [6]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{-1} + \mathrm {Tr}_{n}^{1}(x+ (x^{-1}+1)^{-1})} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2t} is even [7]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{-1} + \mathrm {Tr}_{n}^{1}(x^{-3(2^{k}+1)}+ (x^{-1}+1)^{3(2^{k}+1)})} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2t} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\leq k \leq t-1} [7]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_u(F^{-1}(x))|_{H_u}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2t,F(x)} is a quadratic APN permutation on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb F} _ {2^{n+1}}, u \in {\mathbb F}^{*}_{2^{n+1}},}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_u(x)= F(x)+F(x+u)+F(u),}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_u = \{L_u(x)|x \in {\mathbb F} _ {2^{n+1}}\}}
[8]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle\sum_{i=0}^{2^{n}-3} x^{i}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2t, } t is odd [9]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{-1} + t(x^{2^{s}}+x)^{2^{sn}-1}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} is even Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle , t \in {\mathbb F}^{*} _ {2^{s}},} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s, n} are odd, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in {\mathbb F}^{*} _ {2^{s}}} [10]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{2^{k}+1} + t(x^{2^{s}}+x)^{2^{sn}-1}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n, s} are odd, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in {\mathbb F}^{*} _ {2^{s}}, gcd(k, sn) = 1 } [11]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x, x_n) \mapsto}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ((1+x_{n})x^{-1}+x_{n}\alpha x^{-1}, f(x, x_{n}))}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is even Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x, \alpha \in {\mathbb F} _ {2^{n-1}}, x_n \in {\mathbb F} _ {2}, \mathrm{Tr}_{n-1}(\alpha) = \mathrm{Tr}_{n-1}\left(\frac{1}{\alpha}\right) = 1,}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x, x_n)} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n, 1)-} function
[12]
  1. R. Gold. Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inf. Theory, 14, pp. 154-156, 1968. https://doi.org/10.1109/TIT.1968.1054106
  2. 2.0 2.1 K. Nyberg. Differentially uniform mappings for cryptography. Advances in Cryptography, EUROCRYPT’93, Lecture Notes in Computer Science 765, pp. 55-64, 1994. Lecture Notes in Computer Science, vol 765. Springer, Berlin, Heidelberg https://doi.org/10.1007/3-540-48285-7_6
  3. T. Kasami. The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. and Control, 18, pp. 369-394, 1971. https://doi.org/10.1016/S0019-9958(71)90473-6
  4. G. Lachaud, J. Wolfmann. The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inf. Theory, vol. 36, no. 3, pp. 686-692, 1990. https://doi.org/10.1109/18.54892
  5. C. Bracken, G. Leander. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields and Their Applications, vol. 16, no. 4, pp. 231-242, 2010. https://doi.org/10.1016/j.ffa.2010.03.001
  6. C. Bracken, C. H. Tan, Y. Tan. Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields and Their Applications, vol. 18, no. 3, pp. 537-546, 2012. https://doi.org/10.1016/j.ffa.2011.11.006
  7. 7.0 7.1 Y. Tan, L. Qu, C. H. Tan, C. Li. New Families of Differentially 4-Uniform Permutations over F(22k). In: T. Helleseth, J. Jedwab (eds) Sequences and Their Applications - SETA 2012. SETA 2012. Lecture Notes in Computer Science, vol. 7280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30615-0_3
  8. Y. Li, M. Wang. Constructing differentially 4-uniform permutations over GF(22m) from quadratic APN permutations over GF(22m+1). Designs, Codes and Cryptography, vol. 72, pp. 249-264, 2014. https://doi.org/10.1007/s10623-012-9760-9
  9. Y. Yu, M. Wang, Y. Li. Constructing Differentially 4 Uniform Permutations from Known Ones. Chinese Journal of Electronics, vol. 22, no. 3, pp. 495-499, 2013.
  10. Z. Zha, L. Hu, S. Sun. Constructing new differentially 4-uniform permutations from the inverse function. Finite Fields and Their Applications, vol. 25, pp. 64-78, 2014. https://doi.org/10.1016/j.ffa.2013.08.003
  11. Xu G, Cao X, Xu S. Constructing new differentially 4-uniform permutations and APN functions over finite fields. Cryptography and Communications-Discrete Structures, Boolean Functions and Sequences. Pre-print. 2014.
  12. C. Carlet, D. Tang, X. Tang, Q. Liao. New Construction of Differentially 4-Uniform Bijections. In: D. Lin, S. Xu, M. Yung (eds) Information Security and Cryptology. Inscrypt 2013. Lecture Notes in Computer Science, vol. 8567, Springer, Cham. https://doi.org/10.1007/978-3-319-12087-4_2