Some APN functions CCZ-equivalent to ----- and CCZ-equivalent to the Gold functions over GF(2^n)

From Boolean
Jump to navigation Jump to search

Some APN functions CCZ-equivalent to [math]\displaystyle{ x^3+tr_{n}(x^9) }[/math] and CCZ-inequivalent to the Gold functions over [math]\displaystyle{ \mathbb{F}_{2^n} }[/math] (constructed in [1])

[math]\displaystyle{ N^\circ }[/math] Functions Conditions [math]\displaystyle{ d^\circ }[/math]
[math]\displaystyle{ 1 }[/math] [math]\displaystyle{ x^3+tr_n(x^9)+(x^2+x)tr_n(x^3+x^9) }[/math] [math]\displaystyle{ n\geqslant5 }[/math] odd, [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 3 }[/math]
[math]\displaystyle{ 2 }[/math] [math]\displaystyle{ x^3+tr_n(x^9)+(x^2+x+1)tr_n(x^3) }[/math] [math]\displaystyle{ n\geqslant4 }[/math] even, [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 3 }[/math]
[math]\displaystyle{ 3 }[/math] [math]\displaystyle{ \Big(x+tr_n^3(x^6+x^{12})+tr_n(x)tr_n^3(x^3+x^{12})\Big)^3+ }[/math] [math]\displaystyle{ tr_n\Big(\left(x+tr_n^3(x^6+x^{12})+tr_n(x)tr_n^3(x^3+x^{12})\right)^9\Big) }[/math] [math]\displaystyle{ 6|n }[/math], [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 4 }[/math]
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ \left(x^{\frac{1}{3}}+tr_n^3(x+x^4)\right)^{-1}+tr_n\left(\left(\left(x^{\frac{1}{3}}+tr_n^3(x+x^4)\right)^{-1}\right)^{9}\right) }[/math] [math]\displaystyle{ 3|n }[/math], [math]\displaystyle{ n }[/math] odd [math]\displaystyle{ 4 }[/math]
  1. Budaghyan, Lilya, Claude Carlet, and Gregor Leander. "Constructing new APN functions from known ones." Finite Fields and Their Applications 15.2 (2009): 150-159.