Some APN functions CCZ-equivalent to Gold functions and EA-inequivalent to power functions over GF(2^n)
Jump to navigation
Jump to search
Some APN functions CCZ-equivalent to Gold functions and EA-inequivalent to power functions over[math]\displaystyle{ \mathbb{F}_{2^n} }[/math][1].
Functions | Conditions | [math]\displaystyle{ d^\circ }[/math] |
---|---|---|
[math]\displaystyle{ x^{2^i+1}+(x^{2^i}+x+{\mathrm Tr}_n(1)+1){\mathrm Tr}_n(x^{2^i+1}+x\ {\mathrm Tr}_n(1)) }[/math] | [math]\displaystyle{ n\geqslant4 }[/math], [math]\displaystyle{ \gcd(i,n)=1 }[/math] | [math]\displaystyle{ 3 }[/math] |
[math]\displaystyle{ [x+{\mathrm Tr}_n^3(x^{2(2^i+1)}+x^{4(2^i+1)})+{\mathrm Tr}_n(x){\mathrm Tr}_n^3(x^{2^i+1}+x^{2^{2i}(2^i+1)})]^{2^i+1} }[/math] | [math]\displaystyle{ 6|n\ , \gcd(i,n)=1 }[/math] | [math]\displaystyle{ 4 }[/math] |
[math]\displaystyle{ x^{2^i+1}+{\mathrm Tr}_n^m(x^{2^i+1})+x^{2^i}{\mathrm Tr}_n^m(x)+x \ {\mathrm Tr}_n^m(x)^{2^i} }[/math]
[math]\displaystyle{ +[{\mathrm Tr}_n^m(x)^{2^i+1}+{\mathrm Tr}_n^m(x^{2^i+1})+{\mathrm Tr}_n^m(x)]^{\frac{1}{2^i+1}}(x^{2^i}+{\mathrm Tr}_n^m(x)^{2^i}+1) }[/math] [math]\displaystyle{ +[{\mathrm Tr}_n^m(x)^{2^i+1}+{\mathrm Tr}_n^m(x^{2^i+1})+{\mathrm Tr}_n^m(x)]^{\frac{2^i}{2^i+1}}(x+{\mathrm Tr}_n^m(x)) }[/math] |
[math]\displaystyle{ \ m\ne n\ , n\ odd\ , m|n\ , \gcd(i,n)=1\ }[/math] | [math]\displaystyle{ \ m+2\ }[/math] |
- ↑ L. Budaghyan, C.Carlet, A. Pott. New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inf. Theoery, vol. 52, no. 3, pp. 1141-1152, 2006. https://doi.org/10.1109/TIT.2005.864481