Differentially 4-uniform permutation: Difference between revisions

From Boolean
Jump to navigation Jump to search
No edit summary
No edit summary
Line 52: Line 52:


<tr>
<tr>
<td><math>a^2x^{2^{2m+1}+1}+b^2x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^2+c)x^3</math></td>
<td><math>L_u(F^{-1}(x))|_{H_u}</math></td>
<td><math>n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx</math> satisfies the conditions in Lemma 8 of [7]</td>
<td><math>n=2t,F(x)</math> is a quadratic APN permutation on <math>{\mathbb F} _ {2^{n+1}}, u \in {\mathbb F^{*}} _ {2^{n+1}}</math></td>
<td><ref>Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018</ref></td>
<td><ref>Li Y, Wang M. Constructing differentially 4-uniform permutations over<math>{\mathbb F} _ {2^{2m}} </math> from quadratic APN permutations over <math>{\mathbb F} _ {2^{2m+1}}</math>. Designs, Codes and Cryptography. 2014 Aug 1;72(2):249-64.</ref></td>
</tr>
</tr>
</table>
</table>

Revision as of 11:04, 13 June 2019

Functions Conditions References
and t is odd [1][2]
and t is odd [3]
(inverse) [2][4]
and t is odd [5]
is odd, and is a primitive element in [6]
is even [7]
and [7]
is a quadratic APN permutation on [8]
  1. Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.). IEEE transactions on Information Theory. 1968 Jan;14(1):154-6.
  2. 2.0 2.1 Nyberg K. Differentially uniform mappings for cryptography. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 55-64).
  3. Kasami T. The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Information and Control. 1971 May 1;18(4):369-94.
  4. Lachaud G, Wolfmann J. The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE transactions on information theory. 1990 May;36(3):686-92.
  5. Bracken C, Leander G. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields and Their Applications. 2010 Jul 1;16(4):231-42.
  6. Bracken C, Tan CH, Tan Y. Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields and Their Applications. 2012 May 1;18(3):537-46.
  7. 7.0 7.1 >Tan Y, Qu L, Tan CH, Li C. New Families of Differentially 4-Uniform Permutations over . InInternational Conference on Sequences and Their Applications 2012 Jun 4 (pp. 25-39). Springer, Berlin, Heidelberg.
  8. Li Y, Wang M. Constructing differentially 4-uniform permutations over from quadratic APN permutations over . Designs, Codes and Cryptography. 2014 Aug 1;72(2):249-64.