Differentially 4-uniform permutation
From Boolean
Revision as of 11:17, 12 June 2019 by
Fady
(
talk
|
contribs
)
(Created page with "<table> <tr> <th>Functions</th> <th>Conditions</th> <th>References</th> </tr> <tr> <td><math>x^{2^i+1}</math></td> <td><math>gcd(i,n) = 2, n = 2t and t is odd</math></td> <td...")
(diff) ← Older revision |
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to navigation
Jump to search
Functions
Conditions
References
x
2
i
+
1
{\displaystyle x^{2^{i}+1}}
g
c
d
(
i
,
n
)
=
2
,
n
=
2
t
a
n
d
t
i
s
o
d
d
{\displaystyle gcd(i,n)=2,n=2tandtisodd}
[1]
s
x
q
+
1
+
x
2
i
+
1
+
x
q
(
2
i
+
1
)
+
c
x
2
i
q
+
1
+
c
q
x
2
i
+
q
{\displaystyle sx^{q+1}+x^{2^{i}+1}+x^{q(2^{i}+1)}+cx^{2^{i}q+1}+c^{q}x^{2^{i}+q}}
q
=
2
m
,
n
=
2
m
,
{\displaystyle q=2^{m},n=2m,}
g
c
d
(
i
,
m
)
=
1
{\displaystyle gcd(i,m)=1}
,
c
∈
F
2
n
,
s
∈
F
2
n
∖
F
q
,
X
2
i
+
1
+
c
X
2
i
+
c
q
X
+
1
has no solution
x
{\displaystyle c\in \mathbb {F} _{2^{n}},s\in \mathbb {F} _{2^{n}}\setminus \mathbb {F} _{q},X^{2^{i}+1}+cX^{2^{i}}+c^{q}X+1{\text{ has no solution }}x}
s.t.
x
q
+
1
=
1
{\displaystyle x^{q+1}=1}
[2]
x
3
+
a
−
1
T
r
n
(
a
3
x
9
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}(a^{3}x^{9})}
a
≠
0
{\displaystyle a\neq 0}
[3]
x
3
+
a
−
1
T
r
n
3
(
a
3
x
9
+
a
6
x
18
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{3}x^{9}+a^{6}x^{18})}
3
|
n
{\displaystyle 3|n}
,
a
≠
0
{\displaystyle a\neq 0}
[4]
x
3
+
a
−
1
T
r
n
3
(
a
6
x
18
+
a
12
x
36
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{6}x^{18}+a^{12}x^{36})}
3
|
n
,
a
≠
0
{\displaystyle 3|n,a\neq 0}
[4]
u
x
2
s
+
1
+
u
2
k
x
2
−
k
+
2
k
+
s
+
v
x
2
−
k
+
1
+
w
u
2
k
+
1
x
2
s
+
2
k
+
s
{\displaystyle ux^{2^{s}+1}+u^{2^{k}}x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^{k}+1}x^{2^{s}+2^{k+s}}}
n
=
3
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
v
,
w
∈
F
2
k
,
v
w
≠
1
,
3
|
(
k
+
s
)
,
u
primitive in
F
2
n
∗
{\displaystyle n=3k,\gcd(k,3)=\gcd(s,3k)=1,v,w\in \mathbb {F} _{2^{k}},vw\neq 1,3|(k+s),u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[5]
(
x
+
x
2
m
)
2
k
+
1
+
u
′
(
u
x
+
u
2
m
x
2
m
)
(
2
k
+
1
)
2
i
+
u
(
x
+
x
2
m
)
(
u
x
+
u
2
m
x
2
m
)
{\displaystyle (x+x^{2{^{m}}})^{2^{k}+1}+u'(ux+u^{2^{m}}x^{2^{m}})^{(2^{k}+1)2^{i}}+u(x+x^{2^{m}})(ux+u^{2^{m}}x^{2^{m}})}
n
=
2
m
,
m
⩾
2
{\displaystyle n=2m,m\geqslant 2}
even,
gcd
(
k
,
m
)
=
1
{\displaystyle \gcd(k,m)=1}
and
i
⩾
2
{\displaystyle i\geqslant 2}
even,
u
primitive in
F
2
n
∗
,
u
′
∈
F
2
m
not a cube
{\displaystyle u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*},u'\in \mathbb {F} _{2^{m}}{\text{ not a cube }}}
[6]
a
2
x
2
2
m
+
1
+
1
+
b
2
x
2
m
+
1
+
1
+
a
x
2
2
m
+
2
+
b
x
2
m
+
2
+
(
c
2
+
c
)
x
3
{\displaystyle a^{2}x^{2^{2m+1}+1}+b^{2}x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^{2}+c)x^{3}}
n
=
3
m
,
m
odd
,
L
(
x
)
=
a
x
2
2
m
+
b
x
2
m
+
c
x
{\displaystyle n=3m,m\ {\text{odd}},L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx}
satisfies the conditions in Lemma 8 of [7]
[7]
↑
Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.). IEEE transactions on Information Theory. 1968 Jan;14(1):154-6.
↑
Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
↑
Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
↑
4.0
4.1
Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
↑
Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
↑
Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
↑
Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
LANGUAGE
Views
Read
View source
View history
More
Search
Navigation
Main page
Tables
Recent changes
Random page
Help
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information