The following tables list a lower bound on the Hamming distance between all known CCZ-inequivalent APN representatives up to dimension 11 using the methods described used in [1]. Note that the lower bound is a CCZ-invariant (unlike the exact minimum distance itself) and it can be calculated via the formula [math]\displaystyle{ l(F) = \lceil \frac{m_F}{3} \rceil + 1 }[/math], where [math]\displaystyle{ l(F) }[/math] is the lower bound on the Hamming distance between an [math]\displaystyle{ (n,n) }[/math]-function [math]\displaystyle{ F }[/math] and the closest APN function, and [math]\displaystyle{ m_F }[/math] is defined as [math]\displaystyle{ m_F = \min_{b, \beta \in \mathbb{F}_{2^n}} | \{ a \in \mathbb{F}_{2^n} : (\exists x \in \mathbb{F}_{2^n})( F(x) + F(a+x) + F(a + \beta) = b ) \} | }[/math]. The values of [math]\displaystyle{ m_F }[/math] for the CCZ-inequivalent representatives are provided in the tables for convenience. The representatives for dimensions 7 and 8 are taken from the list of Known quadratic APN polynomial functions over GF(2^7) and Known quadratic APN polynomial functions over GF(2^8), respectively, while the rest are taken from the table of CCZ-inequivalent APN functions from the known APN classes over GF(2^n) (for n between 6 and 11).
The tables for dimensions 7 and 8 can be found under Lower bounds on APN-distance for all known APN functions in dimension 7 and Lower bounds on APN-distance for all known APN functions in dimension 8, respectively, due to their large size.
DIMENSION 9 |
ID |
[math]\displaystyle{ \Pi_F^0 }[/math] |
[math]\displaystyle{ m_F }[/math] |
lower bound |
1 |
255511, 512 |
255 |
86 |
2 |
255511, 512 |
255 |
86 |
3 |
255511, 512 |
255 |
86 |
4 |
255511, 512 |
255 |
86 |
5 |
255511, 512 |
255 |
86 |
6 |
255511, 512 |
255 |
86 |
7 |
2313, 23745, 24027, 24336, 24654, 24936, 25236, 25537, 25827, 26145, 26454, 26745, 27036, 2739, 27618, 2793, 512 |
231 |
78 |
8 |
255511, 512 |
255 |
86 |
9 |
255511, 512 |
255 |
86 |
10 |
255511, 512 |
255 |
86 |
11 |
255511, 512 |
255 |
86 |
DIMENSION 10 |
ID |
[math]\displaystyle{ \Pi_F^0 }[/math] |
[math]\displaystyle{ m_F }[/math] |
lower bound |
1 |
495682, 543341, 1024 |
495 |
166 |
2 |
495682, 543341, 1024 |
495 |
166 |
3 |
495682, 543341, 1024 |
495 |
166 |
4 |
47740, 48330, 48960, 49557, 501220, 50770, 513160, 519105, 525150, 53140, 53750, 5431, 54940, 1024 |
477 |
160 |
5 |
495682, 543341, 1024 |
495 |
166 |
6 |
495682, 543341, 1024 |
495 |
166 |
7 |
495682, 543341, 1024 |
495 |
166 |
8 |
495682, 543341, 1024 |
495 |
166 |
DIMENSION 11 |
ID |
[math]\displaystyle{ \Pi_F^0 }[/math] |
[math]\displaystyle{ m_F }[/math] |
lower bound |
1 |
10232047, 2048 |
255 |
86 |
2 |
10232047, 2048 |
255 |
86 |
3 |
10232047, 2048 |
255 |
86 |
4 |
10232047, 2048 |
255 |
86 |
5 |
10232047, 2048 |
255 |
86 |
6 |
10232047, 2048 |
255 |
86 |
7 |
10232047, 2048 |
255 |
86 |
8 |
10232047, 2048 |
255 |
86 |
9 |
10232047, 2048 |
255 |
86 |
10 |
10232047, 2048 |
255 |
86 |
11 |
10232047, 2048 |
255 |
86 |
12 |
97811, 98133, 98422, 98766, 99066, 99355, 99677, 99977, 1002110, 100555, 100866, 101155, 1014121, 101755, 1020121, 102378, 102688, 102988, 103266, 1035110, 103855, 104199, 104477, 104788, 105044, 105366, 105655, 105944, 106266, 106522, 106811, 2048 |
978 |
326 |
13 |
10232047, 2048 |
255 |
86 |
- ↑ Budaghyan L, Carlet C, Helleseth T, Kaleyski N. Changing Points in APN Functions. IACR Cryptology ePrint Archive. 2018;2018:1217.